Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ALMA precisely measures black hole mass

18.06.2015

Precise 'weight check' of black hole

A research group led by Kyoko Onishi at the SOKENDAI (The Graduate University for Advanced Studies), including a researcher in the National Astronomical Observatory of Japan (NAOJ), National Institutes of Natural Sciences (NINS), observed the barred spiral galaxy NGC 1097 with ALMA and found that the central supermassive black hole (SMBH) has a mass 140 million times the mass of the Sun.


This is the central region of NGC 1097 observed with ALMA. The velocity of the HCN gas is shown in the color and overlaid on the optical image taken by the Hubble Space Telescope. Red indicates gas is moving away from us while purple is coming closer to us.

Credit: ALMA (ESO/NAOJ/NRAO), K. Onishi (SOKENDAI), NASA/ESA Hubble Space Telescope

Since galaxies are believed to have co-evolved with SMBHs, SMBH mass is an important parameter in understanding their relation in the context of galaxy evolution. This research result is based on the ALMA observation data obtained within a two-hour observation, which demonstrates the outstanding capacity of ALMA in the SMBH mass measurement.

It is thought that a majority of the galaxies in the universe have a massive black hole in the galactic center. Since these black holes have masses of several millions to tens of billions of solar masses, they are called "supermassive black holes (SMBHs)".

Recent observation results suggest the correlation between the SMBH mass and the central bulge mass/luminosity of the host galaxy. Such correlation indicates that SMBHs may have a key role in the growth and evolution of galaxies.

SMBH mass is an essential parameter to reveal the correlation between the SMBH and the host galaxy. There are several methods to derive the SMBH mass, one of which is using proper motion of stars and megamasers (astrophysical objects that emit strong radio waves) around the SMBH to estimate the gravity of the SMBH applied to the observed objects.

This measurement method, however, is difficult and not suitable for the most galaxies because it requires observations of the regions around the SMBH with very high angular resolution (*1 and *2). Another method is using ionized gas dynamics distributed in the host galaxy bulge.

Ionized gas, however, is easily affected by non-circular motion such as inflow or outflow of gas, in addition to the gravity of the SMBH. This makes it difficult to accurately measure SMBH mass for a large number of galaxies. The method most commonly used to estimate SMBH mass is the one using stellar dynamics in host galaxies, although its application is rather limited to elliptical galaxies and thus it won't be a versatile SMBH mass measurement method applicable to wide ranging types of galaxies.

An alternative to these conventional methods is to derive the SMBH mass from molecular gas dynamics in the central region of a galaxy, which was formulated by Davis et al. at the European Southern Observatory (ESO). This method has the advantage that molecular gas is less susceptible to environmental conditions compared to stars and ionized gas, and therefore the motion affected by SMBH gravity can be measured more easily. Davis et al. made observations of a galaxy NGC 4526 for tens of hours with a radio telescope called CARMA and estimated the mass of the central SMBH.

Observations with ALMA:

A research team led by Kyoko Onishi, a doctoral student at the SOKENDAI (The Graduate University for Advanced Studies) doing her research at the National Astronomical Observatory of Japan (NAOJ), took on a challenge to derive the mass of the SMBH in the central region of the galaxy NGC 1097 (*3) using ALMA observation data. ALMA's high sensitivity enables the team to measure gas velocity with high accuracy.

"While NGC 4526, observed by a team led by Davis, is a lenticular galaxy, NGC 1097 is a barred spiral galaxy. Recent observation results indicate the relationship between SMBH mass and host galaxy properties varies depending on the type of galaxies, which makes it more important to derive accurate SMBH masses in various types of galaxies," Onishi said.

The research team made precise measurement of the distribution and kinematics of molecular gas by observing emission lines from hydrogen cyanide (HCN) and formyl cation (HCO+) with ALMA, and then examined the gravitational motion of the molecular gas by making some astrophysical models.

Since the gravity applied to the molecular gas differs depending on the SMBH mass as well as the density and distribution of stars in the bulge, the gas motion was calculated by making models assuming various cases in order to find a model which is best fitted for the observation data. As a result of the calculation, it was found that the central SMBH of NGC1097 has a mass 140 million times the solar mass. This is the first SMBH mass measurement using this method in late-type galaxies (e.g. spiral and barred spiral galaxies).

Onishi said, expressing her expectations for future ALMA observations, "We could obtain the kinematics data of the central molecular gas in NGC 1097 within a two-hour ALMA observation. To reveal the relation between the SMBH and the host galaxy, we need to derive more SMBH masses in various types of galaxies. ALMA will enable us to observe a large number of galaxies in a practical length of time."

Measuring the mass of SMBHs is the first step to solving the long-standing mysteries about how galaxies and SMBHs have been formed and co-evolved. This research assures ALMA's capability in this field.

###

Notes:

*1) The method to derive the SMBH mass using the proper motion of stars around the SMBH is applicable only to the black hole at the center of our Milky Way galaxy. This method cannot be extended to other galaxies, which are too far to observe individual stars in the central region separately.

*2) In 1993, a high-velocity maser was observed in the central region of the galaxy NGC4258 with the 45-m radio telescope at the NAOJ Nobeyama Radio Observatory. This was the first observational evidence for the presence of a SMBH. However this method cannot be used to derive SMBH masses in a majority of galaxies because only a very scarce number of masers have been found around SMBHs.

*3) NGC 1097 is a barred spiral galaxy about 47 million light years away in the direction of the constellation of Fornax.

Paper / Research Team:

This observation result was published Onishi et al. "A Measurement of the Black-Hole Mass in NGC 1097 using ALMA" in the Astrophysical Journal, issued in June 2015.

This research was conducted by:

  • Kyoko Onishi (SOKENDAI)
  • Satoru Iguchi (National Astronomical Observatory of Japan/ SOKENDAI)
  • Kartik Sheth (U.S. National Radio Astronomy Observatory)
  • Kotaro Kohno (The University of Tokyo)

This research is supported by JSPS Grants-in-Aid for Scientific Research (No. 26*368).

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

Contacts:

Science Contact
Kyoko Onishi
Graduate student, SOKENDAI (The Graduate University for Advanced Studies), Japan
Email: kyoko.onishi@nao.ac.jp
Phone: +81-80-6721-1097

PR contact
Masaaki Hiramatsu
Chief Public Information Officer, National Astronomical Observatory of Japan
Email: hiramatsu.masaaki@nao.ac.jp
Phone: +81-90-1257-7980

Masaaki Hiramatsu | EurekAlert!

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Detecting damage in non-magnetic steel with the help of magnetism

23.07.2018 | Materials Sciences

Researchers move closer to completely optical artificial neural network

23.07.2018 | Information Technology

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>