Advance made toward communication, computing at 'terahertz' speeds

Existing communications and computer architecture are increasingly being limited by the pedestrian speed of electrons moving through wires, and the future of high-speed communication and computing is in optics, experts say. The Holy Grail of results would be “wireless interconnecting,” which operates at speeds 100 to 1,000 times faster than current technology.

The new discovery, made by researchers at Oregon State University, the University of Iowa and Philipps University in Germany, has identified a way in which nanoscale devices based on gallium arsenide can respond to strong terahertz pulses for an extremely short period, controlling the electrical signal in a semiconductor. The research builds on previous findings for which OSU holds an issued patent.

“Optical communication uses the extraordinary speed of light as the signal, but right now it’s still controlled and limited by electrical signaling at the end,” said Yun-shik Lee, an associate professor in the OSU Department of Physics. “Electrons and wires are too slow, they’re a bottleneck. The future is in optical switching, in which wires are replaced by emitters and detectors that can function at terahertz speeds.”

The gallium arsenide devices used in this research can do that, the scientists discovered.

“This could be very important,” Lee said. “We were able to manipulate and observe the quantum system, basically create a strong response and the first building block of optical signal processing.”

The first applications of this type of technology, Lee said, would probably be in optical communications of almost any type – video, audio or others. The ultimate application could be quantum computing, in which computers would be orders of magnitude faster than they are now, working with a different physical and logic basis, not even using conventional transistors. Among other uses, their extraordinary speeds would make them extremely valuable for secure codes and communications.

The current use of gallium arsenide was done at the very low temperatures of liquid helium, which would not be practical for broader use. Other materials will need to be identified that can accomplish similar tasks at room temperature, the researchers said.

This research was just published in Solid State Electronics, a professional journal. It was supported by the National Science Foundation and the Oregon Nanoscience and Microtechnologies Institute.

About the OSU College of Science: As one of the largest academic units at OSU, the College of Science has 14 departments and programs, 13 pre-professional programs, and provides the basic science courses essential to the education of every OSU student. Its faculty are international leaders in scientific research.

Media Contact

Yun-Shik Lee EurekAlert!

More Information:

http://www.oregonstate.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Solving the riddle of the sphingolipids in coronary artery disease

Weill Cornell Medicine investigators have uncovered a way to unleash in blood vessels the protective effects of a type of fat-related molecule known as a sphingolipid, suggesting a promising new…

Rocks with the oldest evidence yet of Earth’s magnetic field

The 3.7 billion-year-old rocks may extend the magnetic field’s age by 200 million years. Geologists at MIT and Oxford University have uncovered ancient rocks in Greenland that bear the oldest…

Decisive breakthrough for battery production

Storing and utilising energy with innovative sulphur-based cathodes. HU research team develops foundations for sustainable battery technology Electric vehicles and portable electronic devices such as laptops and mobile phones are…

Partners & Sponsors