A novel vanishing act

Trapping electrons in a flat plane prevents them from moving freely in the third dimension and opens the door to a whole range of unusual physics. These effects are harnessed, for example, in modern ultrafast transistors, which confine electrons to thin layers of high-quality semiconductor crystals such as gallium arsenide.

But scattering from impurities in semiconductors can mask the deeper underlying physics of these so-called two-dimensional electron gases (2DEGs). Liquid helium may provide an alternative to semiconductors since it is largely impurity free. Using this approach, Denis Konstantinov and Kimitoshi Kono from the RIKEN Advanced Science Institute have demonstrated a novel effect where light totally switches off the conductivity of 2DEGs[1].

Two-dimensional electron gases form naturally at the surface of helium because an intrinsic energy barrier prevents electrons from penetrating any deeper into the liquid. These gases vary markedly from their three-dimensional counterparts because the electron motion in one direction becomes quantized—that is, their velocity in this direction is governed by quantum mechanics and is restricted to a range of discrete values.

Konstantinov and Kono cooled liquid helium-3 to 0.3 kelvin. They supplied electrons from a nearby hot filament, and applied voltage to a plate below the helium to control the number of electrons per unit area. Then, they fired microwave radiation at the 2DEG (Fig. 1) and measured the longitudinal conductivity— the current induced by an electric field applied along one direction—as a function of external magnetic field. They saw that the conductivity periodically fell to zero as they increased the magnetic field. When they switched off the source of microwave photons, however, this effect ceased.

This previously unidentified nullifying effect of microwave photons on conductivity is a consequence of energy-conserved scattering of the liquid helium’s electrons between different energy states—specifically, the first excited and ground sub-bands. “When the electrons stay in the ground sub-band, the effects are rather dull,” says Kono. “In our experiment, absorption of microwave photons transfers electrons to a higher energy sub-band,” Konstantinov adds. “As we change the magnetic field, the energies of states in two subbands cross, and scattering redistributes electrons between the sub-bands.”

Kono and Konstantinov believe that the result will lead to the observation of more novel phenomena in these two-dimensional systems when they are shifted out of their equilibrium state. “The study of nonequilibrium transport in the extremely clean helium system will complement studies of electron transport in semiconductors,” explains Konstantinov.

The corresponding author for this highlight is based at the Low Temperature Physics Laboratory, RIKEN Advanced Science Institute.

Journal information

[1] Konstantinov, D. & Kono, K. Photon-induced vanishing of magnetoconductance in 2D electrons on liquid helium. Physical Review Letters 105, 226801 (2010).

Media Contact

gro-pr Research asia research news

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors