Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A unique data centre for cosmological simulations

16.06.2017

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the exact measurement of the cosmic microwave background (CMB) with the Planck space observatory and many other measurements for example with the Hubble space telescope, the scientists were able to develop a precise model of our Universe. However, little is yet known about how these structures could form from the distribution of matter in the early universe.


Visualizations of the simulated distributions of gas and stars in the Universe from data provided by Cosmowebportal

P. Baintner u. H. Brüchle, LRZ

In order to answer this question, theoretical astrophysicists work with cosmological, hydrodynamical simulations. They test their hypotheses about the universe by developing mathematical models that describe the underlying complex physical processes and run them on high-performance computers trying to reproduce the evolution of the Universe over billions of years. If the underlying assumptions are correct, the simulations should match the current astronomical observations and findings.

A group of astrophysicists led by Dr. Klaus Dolag from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich in close collaboration with the LRZ have now initiated "Cosmowebportal". This unique data centre for cosmological simulations provides access to the results of the world's most extensive set of cosmological hydrodynamic simulations, Magneticum Pathfinder, also developed by Klaus Dolag’s team and carried out at the LRZ.

The complete simulations are saved at the LRZ in Garching on a data store for large datasets, which is connected to the supercomputer SuperMUC. Using a web interface, interested scientists can, for example, select objects from the raw simulation data, process it, and even create virtual observations mimicing existing or future space telescopes.

"Large astronomical projects such as the space telescopes Euclid or eRosita, which are to be launched in the next few years, will observe large areas of the Universe, as well as provide further insight into the evolution of the first structures of the Universe so that the significance of cosmological hydrodynamic simulations will even increase in future,” says Klaus Dolag. "A data centre that pools and makes these simulations available therefore is an important facility for scientists working in the field."

Besides Klaus Dolag and Antonio Ragagnin, scientists from the following institutions were involved in the project: C2PAP, the data center of the Excellence Cluster Universe, LRZ, University of Trieste, the INAF Osservatorio Astronomico di Trieste and the Max Planck Computing and Data Facility.

Further information:
http://c2papcosmosim.lrz.de/
www.magneticum.org

Youtube-Link:
https://www.youtube.com/watch?v=-4U4y_kwzzw

Original publication:
Ragagnin et al.: „A web portal for hydrodynamical, cosmological simulations”, Astronomy and Computing, Vol. 20, July 2017; online 6 June 2017,
DOI: 10.1016/j.ascom.2017.05.001
http://dx.doi.org/10.1016/j.ascom.2017.05.001

Contact:
PD Dr. Klaus Dolag
University Observatory of the Ludwig-Maximilians-Universität Munich
Excellence Cluster Universe
Scheinerstraße 1, Munich, Germany
Tel: +49 (0) 89 2180 5994
E-Mail: dolag@usm.lmu.de

Dr. Nicolay J. Hammer
Leibniz Supercomputing Centre (LRZ)
of the Bavarian Academy of Sciences
Boltzmannstraße 1, 85748 Garching n. Munich, Germany
Tel: +49 (0)89 35831 8072
E-Mail: nicolay.hammer@lrz.de

Caption: Visualizations of the simulated distributions of gas and stars in the Universe from data provided by Cosmowebportal: The cube represents a space section of the Universe (more than 300 million light years), the bright spots on the cube faces show galaxies and galaxy clusters along the cosmic web. The first two disks zoom into the central galaxy cluster, the third disk (far right) demonstrates how an observation of the zoom area would look with an X-ray telescope ("virtual telescope").

Weitere Informationen:

http://c2papcosmosim.lrz.de/
http://www.magneticum.org

Petra Riedel | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Astronomy student discovers 17 new planets, including Earth-sized world
28.02.2020 | University of British Columbia

nachricht Explained: Why water droplets 'bounce off the walls'
27.02.2020 | University of Warwick

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

New molten metal hybrid filters from TU Freiberg will make components even safer and more resistant in the future

28.02.2020 | Materials Sciences

Polymers get caught up in love-hate chemistry of oil and water

28.02.2020 | Life Sciences

Two NE tree species can be used in new sustainable building material

28.02.2020 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>