Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A study by the UC3M researches the limits of topological insulators using sound waves

06.03.2019

In these kinds structures, sound signals remain robust and insensitive to noise caused by impurities and defects in the material. In the framework of this research, the scientists have discovered that the acoustic topological insulator could act as an extremely robust waveguide, capable of radiating sound in a very narrow ray towards the far field. This focused acoustic ray could be extremely important for applications such as non-destructive testing by ultrasound or in diagnostic ultrasound scans in medicine and biology, as pointed out by the researchers.

In the article, recently published in the journal Communications Physics along with physicists from the University of Nanjing (China) and the Stanford University (US), the scientists have reviewed the most recent studies on the development of this topic related to quantum physics.


This research analyzes the future of topological insulators using soundwaves (acoustic insulators inside, soundwaves conductors on their surface).

Credit: UC3M

This area of research is at the forefront of physics and won the Nobel Prize in Physics 2016. The scientists who carried out this study wanted to see if the phenomenon of topological insulators, traditionally used in quantum physics to control electrical signals, could have an equivalent effect using sound waves.

"The idea was to use a concept so exotic it could produce completely new possibilities for acoustic transducers, sensors and waveguides. Moreover, from a more physical perspective, it would mean that certain effects in quantum physics have an equivalent in classic sound wave physics", comments one of the authors of the study, Johan Christensen, from the Physics Department at the UC3M.

For this, the researchers wanted to emulate the so-called "valley-Hall effect", used to investigate electrical conduction in different conductive and semi-conductive materials. This effect means that the magnetic field tends to separate the positive charges from the negative charges in opposite directions, so the "valleys" are maximums and minimums of electron energy in a crystal solid.

The balance is restored when the force applied by the electric field generated by the distribution of charges opposes the force applied by the magnetic field. With the aim of emulating an acoustic version of this valley-Hall effect, the researchers created an artificial macroscopic crystal inspired by the weaving of Japanese baskets known as "kagome", substituting the bamboo for small cylinders of epoxy resin. The functioning of this crystal was explained last year in several articles published by Johan Christensen in the scientific journals Advanced materials and Physical review letters.

"Curiously, the acoustic topological states related to the valley-Hall effect show a circulating vortex which, to our surprise, has produced unexpected and unprecedented properties for acoustics", explains Johan Christensen. "Our Kagome crystal showed incredible resistance against pronounced defects, curves and turns when guiding the sound over the surface or interface of the crystal".

###

This line of research is being developed as part of a wider scientific project, an ERC Starting Grant Horizon 2020 funded by the European Union (GA 714577) named "Frontiers in Phononics: Parity-Time Symmetric Phononic Metamaterials" (PHONOMETA). In this context, its aim is to analyse and design a new generation of piezoelectric semiconductors which allow the functioning of complex acoustic systems to be optimised.

Bibliography:

Zhang, X., Xiao, M., Cheng, Y., Lu, M-H, Christensen, J. (2018). Topological sound. Communications Physics, 1:97. 21 December 2018. http://hdl.handle.net/10016/28147

Wang, Mudi, Ye, Liping, Christensen, J., Liu, Zhengyou. (2018) Valley Physics in Non-Hermitian Artificial Acoustic Boron Nitride. Physical review letters, 120, 246601. 12 June 2018.

http://hdl.handle.net/10016/27424

Zhang, Zhiwang; Tian, Ye; Wang, Yihe; Gao, Shuxiang; Cheng, Ying; Liu, Xiaojun; Christensen, Johan. (2018) Directional Acoustic Antennas Based on Valley-Hall Topological Insulators. Advanced Materials. Advanced materials, vol. 30, issue 36 (1803229). 30 July 2018.

http://hdl.handle.net/10016/27425

Video: https://youtu.be/OOEXD6xf8Z0

Media Contact

Javier Alonso Flores
fjalonso@bib.uc3m.es

 @uc3m

http://www.uc3m.es 

Javier Alonso Flores | EurekAlert!
Further information:
https://www.uc3m.es/ss/Satellite/UC3MInstitucional/en/Detalle/Comunicacion_C/1371265368364/1371215537949/A_study_by_the_UC3M_researches_the_limits_of_topological_insulators_using_sound_waves
http://dx.doi.org/10.1038/s42005-018-0094-4

More articles from Physics and Astronomy:

nachricht Levitating objects with light
19.03.2019 | California Institute of Technology

nachricht Stellar cartography
19.03.2019 | Leibniz-Institut für Astrophysik Potsdam

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Molecular motors run in unison in a metal-organic framework

20.03.2019 | Life Sciences

Active substance from plant slows down aggressive eye cancer

20.03.2019 | Life Sciences

Novel sensor system improves reliability of high-temperature humidity measurements

20.03.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>