Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A study by the UC3M researches the limits of topological insulators using sound waves

06.03.2019

In these kinds structures, sound signals remain robust and insensitive to noise caused by impurities and defects in the material. In the framework of this research, the scientists have discovered that the acoustic topological insulator could act as an extremely robust waveguide, capable of radiating sound in a very narrow ray towards the far field. This focused acoustic ray could be extremely important for applications such as non-destructive testing by ultrasound or in diagnostic ultrasound scans in medicine and biology, as pointed out by the researchers.

In the article, recently published in the journal Communications Physics along with physicists from the University of Nanjing (China) and the Stanford University (US), the scientists have reviewed the most recent studies on the development of this topic related to quantum physics.


This research analyzes the future of topological insulators using soundwaves (acoustic insulators inside, soundwaves conductors on their surface).

Credit: UC3M

This area of research is at the forefront of physics and won the Nobel Prize in Physics 2016. The scientists who carried out this study wanted to see if the phenomenon of topological insulators, traditionally used in quantum physics to control electrical signals, could have an equivalent effect using sound waves.

"The idea was to use a concept so exotic it could produce completely new possibilities for acoustic transducers, sensors and waveguides. Moreover, from a more physical perspective, it would mean that certain effects in quantum physics have an equivalent in classic sound wave physics", comments one of the authors of the study, Johan Christensen, from the Physics Department at the UC3M.

For this, the researchers wanted to emulate the so-called "valley-Hall effect", used to investigate electrical conduction in different conductive and semi-conductive materials. This effect means that the magnetic field tends to separate the positive charges from the negative charges in opposite directions, so the "valleys" are maximums and minimums of electron energy in a crystal solid.

The balance is restored when the force applied by the electric field generated by the distribution of charges opposes the force applied by the magnetic field. With the aim of emulating an acoustic version of this valley-Hall effect, the researchers created an artificial macroscopic crystal inspired by the weaving of Japanese baskets known as "kagome", substituting the bamboo for small cylinders of epoxy resin. The functioning of this crystal was explained last year in several articles published by Johan Christensen in the scientific journals Advanced materials and Physical review letters.

"Curiously, the acoustic topological states related to the valley-Hall effect show a circulating vortex which, to our surprise, has produced unexpected and unprecedented properties for acoustics", explains Johan Christensen. "Our Kagome crystal showed incredible resistance against pronounced defects, curves and turns when guiding the sound over the surface or interface of the crystal".

###

This line of research is being developed as part of a wider scientific project, an ERC Starting Grant Horizon 2020 funded by the European Union (GA 714577) named "Frontiers in Phononics: Parity-Time Symmetric Phononic Metamaterials" (PHONOMETA). In this context, its aim is to analyse and design a new generation of piezoelectric semiconductors which allow the functioning of complex acoustic systems to be optimised.

Bibliography:

Zhang, X., Xiao, M., Cheng, Y., Lu, M-H, Christensen, J. (2018). Topological sound. Communications Physics, 1:97. 21 December 2018. http://hdl.handle.net/10016/28147

Wang, Mudi, Ye, Liping, Christensen, J., Liu, Zhengyou. (2018) Valley Physics in Non-Hermitian Artificial Acoustic Boron Nitride. Physical review letters, 120, 246601. 12 June 2018.

http://hdl.handle.net/10016/27424

Zhang, Zhiwang; Tian, Ye; Wang, Yihe; Gao, Shuxiang; Cheng, Ying; Liu, Xiaojun; Christensen, Johan. (2018) Directional Acoustic Antennas Based on Valley-Hall Topological Insulators. Advanced Materials. Advanced materials, vol. 30, issue 36 (1803229). 30 July 2018.

http://hdl.handle.net/10016/27425

Video: https://youtu.be/OOEXD6xf8Z0

Media Contact

Javier Alonso Flores
fjalonso@bib.uc3m.es

 @uc3m

http://www.uc3m.es 

Javier Alonso Flores | EurekAlert!
Further information:
https://www.uc3m.es/ss/Satellite/UC3MInstitucional/en/Detalle/Comunicacion_C/1371265368364/1371215537949/A_study_by_the_UC3M_researches_the_limits_of_topological_insulators_using_sound_waves
http://dx.doi.org/10.1038/s42005-018-0094-4

More articles from Physics and Astronomy:

nachricht FAST detects neutral hydrogen emission from extragalactic galaxies for the first time
02.07.2020 | Chinese Academy of Sciences Headquarters

nachricht First exposed planetary core discovered
01.07.2020 | Universität Bern

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>