Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A study by the UC3M researches the limits of topological insulators using sound waves

06.03.2019

In these kinds structures, sound signals remain robust and insensitive to noise caused by impurities and defects in the material. In the framework of this research, the scientists have discovered that the acoustic topological insulator could act as an extremely robust waveguide, capable of radiating sound in a very narrow ray towards the far field. This focused acoustic ray could be extremely important for applications such as non-destructive testing by ultrasound or in diagnostic ultrasound scans in medicine and biology, as pointed out by the researchers.

In the article, recently published in the journal Communications Physics along with physicists from the University of Nanjing (China) and the Stanford University (US), the scientists have reviewed the most recent studies on the development of this topic related to quantum physics.


This research analyzes the future of topological insulators using soundwaves (acoustic insulators inside, soundwaves conductors on their surface).

Credit: UC3M

This area of research is at the forefront of physics and won the Nobel Prize in Physics 2016. The scientists who carried out this study wanted to see if the phenomenon of topological insulators, traditionally used in quantum physics to control electrical signals, could have an equivalent effect using sound waves.

"The idea was to use a concept so exotic it could produce completely new possibilities for acoustic transducers, sensors and waveguides. Moreover, from a more physical perspective, it would mean that certain effects in quantum physics have an equivalent in classic sound wave physics", comments one of the authors of the study, Johan Christensen, from the Physics Department at the UC3M.

For this, the researchers wanted to emulate the so-called "valley-Hall effect", used to investigate electrical conduction in different conductive and semi-conductive materials. This effect means that the magnetic field tends to separate the positive charges from the negative charges in opposite directions, so the "valleys" are maximums and minimums of electron energy in a crystal solid.

The balance is restored when the force applied by the electric field generated by the distribution of charges opposes the force applied by the magnetic field. With the aim of emulating an acoustic version of this valley-Hall effect, the researchers created an artificial macroscopic crystal inspired by the weaving of Japanese baskets known as "kagome", substituting the bamboo for small cylinders of epoxy resin. The functioning of this crystal was explained last year in several articles published by Johan Christensen in the scientific journals Advanced materials and Physical review letters.

"Curiously, the acoustic topological states related to the valley-Hall effect show a circulating vortex which, to our surprise, has produced unexpected and unprecedented properties for acoustics", explains Johan Christensen. "Our Kagome crystal showed incredible resistance against pronounced defects, curves and turns when guiding the sound over the surface or interface of the crystal".

###

This line of research is being developed as part of a wider scientific project, an ERC Starting Grant Horizon 2020 funded by the European Union (GA 714577) named "Frontiers in Phononics: Parity-Time Symmetric Phononic Metamaterials" (PHONOMETA). In this context, its aim is to analyse and design a new generation of piezoelectric semiconductors which allow the functioning of complex acoustic systems to be optimised.

Bibliography:

Zhang, X., Xiao, M., Cheng, Y., Lu, M-H, Christensen, J. (2018). Topological sound. Communications Physics, 1:97. 21 December 2018. http://hdl.handle.net/10016/28147

Wang, Mudi, Ye, Liping, Christensen, J., Liu, Zhengyou. (2018) Valley Physics in Non-Hermitian Artificial Acoustic Boron Nitride. Physical review letters, 120, 246601. 12 June 2018.

http://hdl.handle.net/10016/27424

Zhang, Zhiwang; Tian, Ye; Wang, Yihe; Gao, Shuxiang; Cheng, Ying; Liu, Xiaojun; Christensen, Johan. (2018) Directional Acoustic Antennas Based on Valley-Hall Topological Insulators. Advanced Materials. Advanced materials, vol. 30, issue 36 (1803229). 30 July 2018.

http://hdl.handle.net/10016/27425

Video: https://youtu.be/OOEXD6xf8Z0

Media Contact

Javier Alonso Flores
fjalonso@bib.uc3m.es

 @uc3m

http://www.uc3m.es 

Javier Alonso Flores | EurekAlert!
Further information:
https://www.uc3m.es/ss/Satellite/UC3MInstitucional/en/Detalle/Comunicacion_C/1371265368364/1371215537949/A_study_by_the_UC3M_researches_the_limits_of_topological_insulators_using_sound_waves
http://dx.doi.org/10.1038/s42005-018-0094-4

More articles from Physics and Astronomy:

nachricht Researchers demonstrate three-dimensional quantum hall effect for the first time
19.08.2019 | Singapore University of Technology and Design

nachricht A laser for penetrating waves
19.08.2019 | Helmholtz-Zentrum Dresden-Rossendorf

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Stanford builds a heat shield just 10 atoms thick to protect electronic devices

19.08.2019 | Information Technology

Researchers demonstrate three-dimensional quantum hall effect for the first time

19.08.2019 | Physics and Astronomy

Catalysts for climate protection

19.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>