Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In a star's final days, astronomers hunt 'signal of impending doom'

01.12.2011
An otherwise nondescript binary star system in the Whirlpool Galaxy has brought astronomers tantalizingly close to their goal of observing a star just before it goes supernova.

The study, submitted in a paper to the Astrophysical Journal, provides the latest result from an Ohio State University galaxy survey underway with the Large Binocular Telescope, located in Arizona.


This Large Binocular Telescope image below of the Whirlpool Galaxy, otherwise known as M51, is part of a new galaxy survey by Ohio State University, where astronomers are searching for signs that stars are about to go supernova. The insets show one particular binary star system before (left) and after (right) one of its stars went supernova.
Credit: Image by Dorota Szczygiel, courtesy of Ohio State University.

In the first survey of its kind, the researchers have been scanning 25 nearby galaxies for stars that brighten and dim in unusual ways, in order to catch a few that are about to meet their end. In the three years since the study began, this particular unnamed binary system in the Whirlpool Galaxy was the first among the stars they've cataloged to produce a supernova.

The astronomers were trying to find out if there are patterns of brightening or dimming that herald the end of a star's life. Instead, they saw one star in this binary system dim noticeably before the other one exploded in a supernova during the summer of 2011.

Though they're still sorting through the data, it's likely that they didn't get any direct observations of the star that exploded – only its much brighter partner.

Yet, principal investigator Christopher Kochanek, professor of astronomy at Ohio State and the Ohio Eminent Scholar in Observational Cosmology, does not regard this first result as a disappointment. Rather, it's a proof of concept.

"Our underlying goal is to look for any kind of signature behavior that will enable us to identify stars before they explode," he said. "It's a speculative goal at this point, but at least now we know that it's possible."

"Maybe stars give off a clear signal of impending doom, maybe they don't," said study co-author Krzystof Stanek, professor of astronomy at Ohio State, "But we'll learn something new about dying stars no matter the outcome."

Postdoctoral researcher Dorota Szczygiel, who led the study of this supernova, explained why the galaxy survey is important.

"The odds are extremely low that we would just happen to be observing a star for several years before it went supernova. We would have to be extremely lucky," she said.

"With this galaxy survey, we're making our own luck. We're studying all the variable stars in 25 galaxies, so that when one of them happens go supernova, we've already compiled data on it." The supernova, labeled 2011dh, was first detected on May 31 and is still visible in telescopes. It originated from a binary star system in the Whirlpool Galaxy – also known as M51, one of the galaxies that the Ohio State astronomers have been observing for three years.

The system is believed to have contained one very bright blue star and one even brighter red star. From what the astronomers can tell, it's likely that the red star is the one that dimmed over the three years, before the blue star initiated the supernova.

When the Ohio State researchers reviewed the Large Binocular Telescope data as well as Hubble Space Telescope images of M51, they saw that the red star had dimmed by about 10 percent over three years, at a pace of three percent per year.

Szczygiel believes that the red star likely survived its partner's supernova.

"After the light from the explosion fades away, we should be able to see the companion that did not explode," she said.

As astronomers gather data from more supernovae – Kochanek speculates that as many as one per year could emerge from their data set – they could assemble a kind of litmus test to predict whether a particular star is near death. Whether it's going to spawn a supernova or shrink into a black hole, there may be particular signals visible on the surface, and this study has shown that those signals are detectable.

The team won't be watching our sun for any changes, however. At less than 10 percent of the mass of the star in supernova 2011dh, our star will most likely meet a very boring end.

"There'll be no supernova for our sun – it'll just fizzle out," Kochanek said. "But that's okay – you don't want to live around an exciting star."

This research was supported by the National Science Foundation.

The Large Binocular Telescope is an international collaboration among institutions in the United Sates, Italy, and Germany. The LBT Corporation partners are: the University of Arizona on behalf of the Arizona University System; the Instituto nazionale di Astrofisica, Italy; the LBT Beteiligungsesellschaft, Germany, representing the Max Planck Society, the Astrophysical Institute of Potsdam, and Heidelberg University; the Ohio State University; and the Research Corporation, on behalf of the University of Notre Dame, University of Minnesota, and University of Virginia.

Contact: Christopher Kochanek, 614-292-5954; Kochanek.1@osu.edu.
Dorota Szczygiel, 614-688-7426; Szczygiel.3@osu.edu
Written by Pam Frost Gorder, 614-292-9475; Gorder.1@osu.edu

Christopher Kochanek | EurekAlert!
Further information:
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>