Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new spin on understanding plasma confinement

11.11.2011
News from the 53rd Annual Meeting of the APS Division of Plasma Physics

To achieve nuclear fusion for practical energy production, scientists often use magnetic fields to confine plasma. This creates a magnetic (or more precisely "magneto-hydrodynamic") fluid in which plasma is tied to magnetic field lines, and where regions of plasma can be isolated and heated to very high temperatures—typically 10 times hotter than the core of the sun!

At these temperatures the plasma is nearly superconducting, and the magnetic field becomes tightly linked to the plasma, able to provide the strong force needed to hold in the hot fusion core. The overall plasma and magnetic field structure becomes akin to that of an onion, where magnetic field lines describe surfaces like the layers in the onion. While heat can be transported readily within the layers, conduction between layers is far more limited, making the core much hotter than the edge.

Yet, even at these extreme temperatures, plasmas still have some electrical resistance and the magnetic field structure can slowly tear apart under certain conditions. Typically this happens within fractions of a second, and can lead to the formation of "magnetic islands", structures which connect the hot plasma core to cooler layers further out. Plasma follows field lines about these magnetic islands, bleeding energy from the core, lowering its temperature, and reducing fusion power production.

Recent experiments in the DIII-D tokamak—a toroidally shaped magnetic confinement device located in San Diego—have shown scientists how spinning the plasma can impede the formation of these magnetic islands.

"Plasma rotation creates a variation in the flow of plasma between magnetic surfaces, very similar to the wind shear that pilots experience," said Dr. Richard Buttery, who led these experiments.

This work shows that naturally occurring rapid rotation in the core of the tokamak plasma creates a stress across surfaces further out that prevents the formation of magnetic islands. The effect was confirmed by applying additional magnetic fields to brake the plasma motion. As the braking increases and plasma rotation slows, the stabilizing effect of the sheared flow is reduced and a magnetic island spontaneously appears. The magnetic island is born rotating, confirming that it is a natural instability of the plasma, rather than being directly driven by the static braking field.

These effects highlight an interesting and curious physics effect: creating flow shear (which might be seen as a source of energy causing islands to appear), strengthens a magnetic fluid's resilience to tearing, enabling it to support higher pressures, and so a hotter and higher performing fusion core. Thus, by applying torque on the plasma to spin it faster while minimizing stray magnetic fields that brake plasma rotation, tokamak fusion performance can be raised.

Abstract:

JI2.00006 Tearing Under Stress--The Collusion of 3D Fields and Resistivity in Low Torque H-modes
Session JI2: 3D Equilibrium, Stability and Control
Ballroom BD, Tuesday, November 15, 2011, 4:30PM:00PM

Saralyn Stewart | EurekAlert!
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht Levitating objects with light
19.03.2019 | California Institute of Technology

nachricht Stellar cartography
19.03.2019 | Leibniz-Institut für Astrophysik Potsdam

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>