Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A space-time sensor for light-matter interactions

30.11.2017

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a billionth of a second). What exactly happens in such an astonishingly short time has so far remained largely inaccessible.


By using trains of extremely short electron pulses, LAP researchers have obtained time-resolved diffraction patterns from crystalline samples. In this image, patterns captured at attosecond intervals have been superimposed, thus revealing, in real time, the kind of electron motions that underlie atomic and subatomic phenomena. (Photo: Baum/Marimoto)

Now a research team led by Dr. Peter Baum and Dr. Yuya Morimoto at the Laboratory for Attosecond Physics (LAP), a collaborative venture between LMU Munich and the Max Planck Institute of Quantum Optics (MPQ), has developed a new mode of electron microscopy, which enables one to observe this fundamental interaction in real time and real space.

To visualize phenomena that occur on the attosecond scale, such as the interaction between light and atoms, one needs a method that keeps pace with the ultrafast processes at a spatial resolution on the atomic scale. To meet these requirements, Baum and Morimoto make use of the fact that electrons, as elementary particles, also possess wave-like properties and can behave as so-called wave packets.

The researchers direct a beam of electrons onto a thin, dielectric foil, where the electron wave is modulated by irradiation with an orthogonally oriented laser. The interaction with the oscillating optical field alternately accelerates and decelerates the electrons, which leads to the formation of a train of attosecond pulses. These wave packets consist of approximately 100 individual pulses, each of which lasts for about 800 attoseconds.

For the purposes of microscopy, these electron pulse trains have one great advantage over sequences of attosecond optical pulses: They have a far shorter wavelength. They can therefore be employed to observe particles with dimensions of less than 1 nanometer, such as atoms. These feature make ultrashort electron pulse trains an ideal tool with which to monitor, in real time, the ultrafast processes initiated by the impact of light oscillations onto matter.

In their first two experimental tests of the new method, the Munich researchers turned their attosecond pulse trains on a silicon crystal, and were able to observe how the light cycles propagate and how the electron wave packets were refracted, diffracted and dispersed in space and time.

In the future, this concept will allow them to measure directly how the electrons in the crystal behave in response to the cycles of light, the primary effect of any light-matter interaction. In other words, the procedure attains sub-atomic and sub-light-cycle resolution, and the physicists at LAP can now monitor these fundamental interactions in real time.

Their next goal is to generate single attosecond electron wave packets, in order to follow what happens during subatomic interactions with even higher precision. The new method could find application in the development of metamaterials.

Metamaterials are artificial, i.e. engineered nanostructures, whose electrical permittivity and magnetic permeability diverge significantly from those of conventional materials. This in turn gives rise to unique optical phenomena, which open up novel perspectives in optics and optoelectronics. Indeed, metamaterials may well serve as basic components in future light-driven computers. Thorsten Naeser

Figure description:
By using trains of extremely short electron pulses, LAP researchers have obtained time-resolved diffraction patterns from crystalline samples. In this image, patterns captured at attosecond intervals have been superimposed, thus revealing, in real time, the kind of electron motions that underlie atomic and subatomic phenomena. (Photo: Baum/Marimoto)

Original publication:
Yuya Morimoto und Peter Baum
Diffraction and microscopy with attosecond electron pulse trains
Nature physics, 27. November 2017; doi: 10.1038/s41567-017-0007-6

Contact:

Dr. Peter Baum
Ludwig-Maximilians-Universität Munich
Am Coulombwall 1
85748 Garching, Germany
Phone: +49 (0)89 289 05 -14102
E-mail: peter.baum@lmu.de

www.ultrafast-electron-imaging.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 - 213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>