Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Shot in the Dark: Detector on the Hunt for Dark Matter

08.11.2013
Leslie Rosenberg and his colleagues are about to go hunting. Their quarry: A theorized-but-never-seen elementary particle called an axion.

The search will be conducted with a recently retooled, extremely sensitive detector that is currently in a testing and shakeout phase at the University of Washington's Center for Experimental Nuclear Physics and Astrophysics.

The axion was first conjectured by physicists in the late 1970s as a solution to a problem in a theory called quantum chromodynamics. Little is known for sure about the axion. It appears to react gravitationally to matter, but otherwise it seems to have no other interaction.

Since the 1930s, scientists have believed there must be some unseen but massive substance, a sort of gravitational glue, that prevents rotating galaxies from spinning apart. Axions, if they in fact do exist, are candidates for the makeup of cold dark matter that would act as that gravitational glue.

Dark matter is believed to account for about one-quarter of all the mass in the universe. However, because axions react so little – and the reactions they are likely to produce are so faint – finding them is tricky.

"We have probably the most sensitive axion detector in operation," Rosenberg said. "It looks for the incredibly feeble interaction between the axion and electromagnetic radiation."

The aim of the Axion Dark Matter Experiment is to search for cold dark matter axions in the halo of the Milky Way galaxy by detecting the very weak conversion of axions into microwave photons.

The detector employs a powerful magnet surrounding a sensitive microwave receiver that is supercooled to 4.2 kelvins, or about minus-452 F. Such low temperature reduces thermal noise and greatly increases the chance that the detector will actually see axions converting to microwave photons.

The microwave receiver can be fine-tuned to the axion mass, which also increases the possibility of detecting an interaction between axions and the detector's magnetic field. A reaction would deposit a minuscule amount of electromagnetic power into the receiver, which could be recorded by computers monitoring the detector.

There have been previous efforts to locate the axion, but there is greater interest in the Axion Dark Matter Experiment because of recent developments in physics research. The most notable is that the Large Hadron Collider near Geneva, Switzerland, lauded for its discovery of the elusive Higgs boson in 2012, did not find evidence to support supersymmetry, a proposed resolution for some inconsistencies among theories of particle physics.

That lack of evidence provided impetus to separate the search for dark matter from work on supersymmetry, Rosenberg said, so the newest version of the Axion Dark Matter Experiment is drawing substantial interest among researchers.

"This is a needle-in-a-haystack experiment. Once we find the needle, we can stop immediately," Rosenberg said.

"We could find it in our first week of data-taking, our last week of data-taking, or never."

Assembly of the detector was completed in early October, and the team has begun weeks to months of commissioning, which involves testing and fine-tuning the equipment. Then the hunt will begin in earnest.

Collaborators in the research come from Lawrence Livermore National Laboratory; the National Radio Astronomy Observatory; the University of California, Berkeley; the University of Sheffield in England; the University of Florida; and Yale University. The work is funded by the Department of Energy.

For more information, contact Rosenberg at 206-221-5856 or ljrosenberg@phys.washington.edu

Vince Stricherz | Newswise
Further information:
http://www.washington.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>