Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A road of no return

09.10.2009
MIT team implements the first '1-way roads' for light that could lead to simpler lightwave technology

Light readily bounces off obstacles in its path. Some of these reflections are captured by our eyes, thus participating in the visual perception of the objects around us.

In contrast to this usual behavior of light, MIT researchers have implemented for the first time a one-way structure in which microwave light flows losslessly around obstacles or defects. This concept, when used in lightwave circuits, might one day reduce their internal connections to simple one-way conduits with much improved capacity and efficiency.

The laws of nature that govern the world around us allow for the propagation of light in both directions. If a light beam is observed propagating in a particular direction, one can also shine a light beam to propagate in the opposite (backward) direction. "The very fact that reflected beams are allowed to exist, combined with the fact that light at least partially reflects from most objects it encounters, makes optical reflections ubiquitous in nature," said MIT physics Professor Marin Soljaèiæ, the senior author of the study.

In a dramatic departure from this common phenomenon, a team made up of MIT physicists Dr. Zheng Wang, Dr. Yidong Chong, Prof. John Joannopoulos, and Prof. Marin Soljaèiæ have implemented and experimentally tested so-called topological photonic crystals that completely prohibit the existence of any lightwave back-reflections. The results, published in the 8th October 2009 edition of Nature, show the first experimental observation of the fascinating new phenomena and capabilities associated with microwave light propagating in this uniquely designed waveguide (a tunnel or "road" for guiding light).

Through the application of an external magnetic field, this specially designed waveguide induces unusual restrictions to the propagation of the light inside it. "We have now found a way to make light travel without bouncing back, by shining it through an array of small ceramic rods placed in a strong magnetic field," said Dr Zheng Wang, a lead author of the paper. For example, instead of light being able to travel to the right or to the left along this waveguide (as is traditionally expected), a magnetic field pointing upwards will allow light propagation only to the right, while a magnetic field pointing downwards allows for propagation of the light only to the left. "Once a particular forward direction of the light travel is chosen, no backward travel is permitted," said Dr. Yidong Chong, also a lead author of the paper. Therefore, light can never bounce back or reflect. Rather, it effortlessly routes around any obstacles and defects in its path without incurring any dissipation. "Loosely speaking the waveguide acts as a perfect cloak of the defect or obstacle in the path of the light" said Professor Joannopoulos, "the only difference is a phase shift of the guided light."

While the focus of the present work is in the microwave regime, in conventional optics, light reflections present a major roadblock to light-driven circuits reaching the same level of sophistication as widely used microelectronic circuits. A variety of practical applications, such as optical isolation and optical information storage, could potentially benefit from the novel and unparalleled one-way photonic behavior observed by the MIT team. Numerous applications that require strong interactions between light and matter could also gain from such an efficiency boost.

This work was funded by the Army Research Office (Institute for Soldier Nanotechnologies), and the National Science Foundation (MRSEC program).

Dr. Zheng Wang | EurekAlert!
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>