Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A rare snapshot of a planetary construction site

24.10.2013
The unusual disk around the star HD 21997 contains both gas and dust

Planets are formed in disks of gas and dust around nascent stars. Now, combined observations with the compound telescope ALMA and the Herschel Space Observatory have produced a rare view of a planetary construction site in an intermediate state of evolution:


Left: Cosmic delivery room: ALMA images of the disk around HD 21997. The top image shows the emission of cold dust grains, situated in a ring around the central star. The lower image displays the emission from carbon monoxide, and shows that gas can also be found closer to the star than dust. © Á. Kóspál (ESA) / A. Moór (Konkoly-Observatory)

Right: Turbulent disk: this image depicts the velocity of the gas around HD 21997. The red-coloured parts of the disk move away from us, while the blue-coloured parts move towards us, indicating that the gas is rotating/orbiting around the central star.
© Á. Kóspál (ESA) / A. Moór (Konkoly-Observatory)

Contrary to expectations, the disk around the star HD 21997 appears to contain both primordial gas left over from the formation of the star itself and dust that appears to have been produced in collisions between planetesimals - small rocks that are the building blocks for the much larger planets. This is the first direct observation of such a “hybrid disk”, and likely to require a revision of current models of planet formation.

When a star similar to our Sun is born, it is surrounded by a disk of dust and gas. Within that disk, the star’s planetary system begins to form: The dust grains stick together to build larger, solid, kilometer-sized bodies known as planetesimals. Those either survive in the form of asteroids and comets, or clump together further to form solid planets like our Earth, or the cores of giant gas planets.

Current models of planet formation predict that, as a star reaches the planetesimal stage, the original gas should quickly be depleted. Some of the gas falls into the star, some is caught up by what will later become giant gas planets like Jupiter, and the rest is dispersed into space, driven by the young star’s intense radiation. After 10 million years or so, all the original gas should be gone.

But now a team of astronomers from the Netherlands, Hungary, Germany, and the US has found what appears to be a rare hybrid disk, which contains plenty of original gas, but also dust produced much later in the collision of planetesimals. As such, it qualifies as a link between an early and a late phase of disk evolution: the primordial disk and a later debris phase.

The astronomers used both ESA’s Herschel Space Observatory and the compound telescope ALMA in Chile to study the disk around the star HD 21997, which lies in the Southern constellation Fornax, at a distance of 235 light-years from Earth. HD 21997 has 1.8 times the mass of our Sun and is around 30 million years old.

The Herschel and ALMA observations show a broad dust ring surrounding the star at distances between about 55 and 150 astronomical units (one astronomical unit is the average Earth-Sun distance). But the ALMA observations also show a gas ring. Surprisingly, the two do not coincide: “The gas ring starts closer to the central star than the dust," explains Ágnes Kóspál from ESA, principal investigator of the ALMA proposal. "If the dust and the gas had been produced by the same physical mechanism, namely by the erosion of planetesimals, we would have expected them to be at the same location. This is clearly not the case in the inner disk."

Attila Moór from Konkoly Observatory adds: “Our observations also showed that previous studies had grossly underestimated the amount of gas present in the disk. Using carbon monoxide as a tracer molecule, we find that the total gas mass is likely to amount to between 30 and 60 times the mass of the Earth.” That value is another indication that the disk is made of primordial material – gas set free in collisions between planetesimals could never explain this substantial quantity.

Thomas Henning from the Max-Planck Institute for Astronomy says: “The presence of primordial gas around the 30 million-year-old HD 21997 is puzzling. Both model predictions and previous observations show that the gas in this kind of disk around a young star should be depleted within about 10 million years."

The team is currently working on finding more systems like HD 21997 for further studies of hybrid disks, and to find out how they fit within the current paradigm of planet formation – or the ways in which the models need to be changed.

Contact

Prof. Dr. Thomas Henning
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-200
Fax: +49 6221 528-339
Email: henning@­mpia.de
Dr. Ágnes Kóspál
European Space Agency, Noordwijk
Phone: +31 71 565-4508
Email: akospal@­rssd.esa.int
Dr. Attila Moór
Konkoly Observatory, Budapest
Phone: +36 1 391-9326
Email: moor@­konkoly.hu
Dr. Markus Pössel
Press & Public Relations
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-261
Email: poessel@­mpia.de
Original publication
Kóspál et al.
ALMA observations of the molecular gas in the debris disk of the 30 Myr old star HD 21997

Astrophysical Journal, 24 October 2013

Moór et al.
ALMA continuum observations of a 30 Myr old gaseous debris disk around HD 2199
Astrophysical Journal, 24 October 2013

Prof. Dr. Thomas Henning | Max-Planck-Institute
Further information:
http://www.mpg.de/7582059/snapshot-planetary-construction-site

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>