Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Quick Look at Electron-Boson Coupling

07.10.2014

Berkeley Lab Researchers Use Ultrafast Spectroscopy on Many Body Effects

Imagine being able to tune the properties of a solid material just by flashing pulses of light on it, for example turning an  insulator into a superconductor. That is just one potential payoff down-the-road from the physical phenomenon of electrons and atoms interacting with ultrashort pulses of light.


These trARPES spectra of doped Bi2212 show photoemission intensity before pumping (t= −1 ps) and after pumping (t=1 and t=10 ps). The arrows mark the position of a kink that signifies the coupling of the electrons to bosons.

The technology of ultrafast spectroscopy is a key to understanding this phenomenon and now a new wrinkle to that technology has been introduced by Berkeley Lab researchers.

In a study led by Alessandra Lanzara of Berkeley Lab’s Materials Sciences Division, time- and angle-resolved photoemission spectroscopy (trARPES) was used to directly measure the ultrafast response of electron self-energy – a fundamental quantity used to describe “many-body” interactions in a material – to photo-excitation with near-infrared light in a high-temperature superconductor.

The results demonstrated a link between the phenomena of electron-boson coupling and superconductivity. A boson can be a force-carrying particle, such as a photon, or composite particle of matter, such an atomic nucleus with an even number of protons and neutrons.

“Below the critical temperature of the superconductor, ultrafast excitations triggered a synchronous decrease of electron self-energy and the superconducting energy gap that continued until the gap was quenched,” says Lanzara. “Above the critical temperature of the superconductor, electron–boson coupling was unresponsive to ultrafast excitations. These findings open a new pathway for studying transient self-energy and correlation effects in solids, such as superconductivity.”

The study of electrons and atoms interacting with intense, ultra-short optical pulses is an emerging field of physics because of the roles these interactions play in modulating the electronic structures and properties of materials such as high-temperature superconductors. ARPES has been the long-standing technique of choice for studying the electronic structure of a material.

In this technique, beams of ultraviolet or X-ray light striking the surface or interface of a sample material cause the photoemission of electrons at angles and kinetic energies that can be measured to reveal detailed information about the material’s electronic band structures. While extremely powerful, ARPES lacks the temporal component required for studying band structural dynamics.

Lanzara and a collaboration that included Wentao Zhang, lead author of a paper on this work in Nature Communications, added the necessary temporal component in their trARPES study. They applied this technique to a material known as Bi2212, a compound of bismuth, strontium, calcium, and copper oxide that is considered one of the most promising of high-temperature superconductors.

They energized the Bi2212 samples with femtosecond pulses of near-infrared laser light then probed the results with femtosecond pulses of ultra-violet laser light. The delay time between pump and probe pulses was precisely controlled so that the electron-boson coupling and the superconducting gap could be tracked at the same time.

“In cuprate materials such as Bi2212, there is a known kink in the photoemission pattern that signifies the coupling of the electrons to bosons,” says Zhang. “However, whether this kink is related in any way to superconductivity has been highly debated. Our results show that it is.”

Zhang’s Nature Communications paper, for which Lanzara is the corresponding author, is titled “Ultrafast quenching of electron–boson interaction and superconducting gap in a cuprate.” Other co-authors are Choongyu Hwang, Christopher Smallwood, Tristan Miller, Gregory Affeldt, Koshi Kurashima, Chris Jozwiak, Hiroshi Eisak, Tadashi Adachi, Yoji Koike and Dung-Hai Lee.

This research was supported by the U.S. Department of Energy’s Office of Science.

Additional Information

For more about the research of Alessandra Lanzara go here

Lynn Yarris | Eurek Alert!
Further information:
http://newscenter.lbl.gov/2014/10/06/a-quick-look-at-electron-boson-coupling/

More articles from Physics and Astronomy:

nachricht Spintronics: Researchers show how to make non-magnetic materials magnetic
06.08.2020 | Martin-Luther-Universität Halle-Wittenberg

nachricht Manifestation of quantum distance in flat band materials
05.08.2020 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>