Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From three to four: A quantum leap in few-body physics

09.04.2009
In 2007 and 2008 two groups of theoretical physicists (Hammer and Platter, and von Stecher, D'Incao, and Greene) predicted the existence of universal four-body states that are closely tied to Efimov trimer states.

Now, a team of scientists of the Institute for Experimental Physics of the University of Innsbruck, Austria, has proven these states experimentally in an ultracold gas of cesium atoms.

At particular energy separations from an Efimov state, they found two four-body loss resonances, which are a strong evidence for the existence of a pair of four-body states closely tied to Efimov trimers. „Ultracold atomic clouds provide a very good system to study these few-body phenomena in experiments", Francesca Ferlaino says, „because we are able to accurately control the interaction conditions and, thus, the separation between the particles."

Few-body problems are among the most difficult ones in physics and for centuries the cleverest minds have been engaged in looking for solutions to the problems that arise in this field. Today it takes comprehensive experiments and an enormous numerical computing effort to solve the problems. The scientific world has now made an important step towards finding simple laws for the complex relations between several interacting objects.

The starting point was the discovery of the Russian physicist Vitali Efimov at the beginning of the 1970s, who predicted the existence of an infinite series of universal three-body quantum states. One of the remarkable properties is the fact that three particles bind to form a weakly bound entity – a trimer - while a dimer of the same particles is not formed. In 2006, 35 years after Efimov presented his paradigm, scientists led by Rudolf Grimm succeeded in proving the phenomenon experimentally and the research on Efimov states has now become a field of research in its own right in the physics of ultracold atoms.

The Innsbruck scientists report on their findings in the journal Physical Review Letters. The project is supported by the Austrian Science Fund (FWF). The successful Italian physicist Francesca Ferlaino, who has worked as a junior scientist in Rudolf Grimm's group for three years, is supported by the Lise-Meitner program of the Austrian Science Fund. She has started to establish her own research group at the Institute for Experimental Physics of the University of Innsbruck.

Francesca Ferlaino | EurekAlert!
Further information:
http://www.uibk.ac.at

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>