Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A novel platform for future spintronic technologies

13.10.2014

Spintronics is an emerging field of technology where devices work by manipulating the spin of electrons rather than their charge.

The field can bring significant advantages to computer technology, combining higher speeds with lower energy consumption. Spintronic circuits need ways to control electron spin without interference from electron charge.

Scientists at EPFL, working with Université Paris-Sud and Paul Scherrer Institut, have discovered that a common insulating material behaves as a perfect spintronic conductor because it is not affected by background electron charge. In addition, the material's properties make it an ideal platform for directly observing a strange subatomic particle that could one day lead to a different, more stable type of quantum computers.

Spintronics

Spintronics (spin-transport or spin-based electronics) is a technology that exploits a quantum property of electrons called spin. Although difficult to describe in everyday terms, electron spin can be loosely compared to the rotation of a planet or a spinning top around its axis.

Spin exists in either of two directions: "up" or "down", which can be described respectively as the clockwise or counter-clockwise rotation of the electron around its axis. Ultimately, spin is what gives electrons their magnetic properties, influencing the way they behave when they enter a magnetic field.

The different directions of electron spin can be used to encode information, much like the binary code used in digital communication. Spintronics can therefore open up a new generation of devices that combine conventional microelectronics with spin-dependent effects, overcoming the limitations of today's electronics like speed and energy consumption.

The main challenge is being able to actually control electron spin, turning "up" or "down" as needed. This can be achieved with certain materials, but the problem is that these are often susceptible to interference from the charge of electrons.

An ideal material for spintronics

The team of Hugo Dil at EPFL, working with scientists from Paris and the PSI, has shown that a transparent insulating material, which normally does not conduct electrical charge, shows spin-dependent properties. The scientists used a method called SARPES, which has been perfected by Hugo Dil's group. The data showed that the electron gas at the surface of strontium titanate (SrTiO3) is spin-polarized, which means that it could be used to control the spin of electrons.

"This is interesting because it is the first evidence of a large spin polarization effect on a truly insulating substrate", says Hugo Dil. The discovery has significant implications for the future of spintronics, because it can lead to the development of spin-polarized materials that are not susceptible to interference from non spin-polarized electrical charge, allowing for finer and better control of electron spin.

A new particle for a different kind of quantum computer

Beyond spintronics, this insulating material might also be important for quantum computing, as it could be used to directly observe an elusive, strange particle called the Majorana fermion. This particle is unique because it actually is its own antiparticle as well.

Sometimes referred to as the "ghost particle", the Majorana fermion has zero energy, zero moment, zero spin, and, so far, has never been observed unambiguously. In the future, Majorana fermions could become the foundation for a different kind of quantum computer that would, in theory, be exceptionally stable, as it would not be susceptible to external interference and noise.

###

This work represents an equal collaboration between Hugo Dil's group at EPFL (ICMP-SOIS), a group from the Université Paris-Sud (CSNSM & CNRS/IN2P3), and experts at Paul Scherrer Institut (Swiss Light Source).

Reference

Santander-Syro AF, Fortuna F, Bareille C, Rödel TC, Landolt G, Plumb NC, Dil JH, Radović M. Giant spin splitting of the two-dimensional electron gas at the surface of SrTiO3. Nature Materials DOI: 10.1038/nmat4107

Nik Papageorgiou | Eurek Alert!
Further information:
http://www.epfl.ch

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>