Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A novel nanoactuator system has been developed

28.08.2018

Researchers at University of Jyväskylä (Finland) and University of Tampere (Finland) together with BioNavis Ltd (Finland) have developed a novel nanoactuator system, where conformation of biomolecule can be tuned by electric field and probed using optical properties of gold nanoparticle.

Over the past decades, nanoactuators for detection or probing of different biomolecules have attracted vast interest for example in the fields of biomedical, food and environmental industry.


Gold nanoparticles tethered on a BSA-protein-protected gold surface via hairpin-DNA are moved reversibly using electric fields, while monitoring their position and DNA conformation optically via changes of its plasmon resonance (by color).

Credit: Jussi Toppari

To provide more versatile tools for active molecular control in nanometer scale, researchers at University of Jyväskylä and University of Tampere have devised a nanoactuator scheme, where gold nanoparticle (AuNP) tethered on a conducting surface is moved reversibly using electric fields, while monitoring its position optically via changes of its plasmon resonance.

Forces induced by the AuNP motion on the molecule anchoring the nanoparticle, can be used to change and study its conformation.

- Related studies use either organic or in-organic interfaces or materials as probes. Our idea was to fuse these two domains together to achieve the best from the both worlds, says postdoctoral researcher Kosti Tapio.

More possibilities to study molecules

According to the current study, it was shown that AuNPs anchored via hairpin-DNA molecule experienced additional discretization in their motion due to opening and closing of the hairpin-loop compared to the plain, single stranded DNA.

- This finding will enable conformational studies of variety of multiple interesting biomolecules, or even viruses, says Associate Professor Vesa Hytönen from the Protein Dynamics Group from the University of Tampere.

Besides studying the structure and behaviour of molecules, this scheme can be extended to surface-enhanced spectroscopies like SERS, since the distance between the particle and the conducting surface and hence the plasmon resonance of the nanoparticle can be reversibly tuned.

- Nanoparticle systems with post-fabrication tuneable optical properties have been developed in the past, but typically the tuning processes are irreversible. Our approach offers more customizability and possibilities when it comes to the detection wavelengths and molecules, states Associate Professor Jussi Toppari from the University of Jyväskylä.

###

The research was funded by the Academy of Finland (OMA - programmable materials) and the Finnish Cultural Foundation (the Central Finland Regional Fund). Authors thank BioNavis Ltd for equipment and essential expertise in the SPR analysis.

Additional information:

- Associate Professor Jussi Toppari, j.jussi.toppari@jyu.fi, +358 40 8054123 Molecular Electronics and Plasmonics Group, Department of Physics and Nanoscience Center, University of Jyväskylä, Finland.

- Associate Professor Vesa Hytönen, vesa.hytonen@uta.fi, +358 40 1901517 Protein Dynamics Group, Faculty of Medicine and Life Sciences and BioMediTech, University of Tampere, Finland.

- Post-doctoral Researcher Kosti Tapio, kostapio@uni-potsdam.de, +358 50 5118827 Optical Spectroscopy and Chemical Imaging, Department of Chemistry, University of Potsdam, Germany.

- Reference: K. Tapio, D. Shao, S. Auer, J.-P. Tuppurainen, M. Ahlskog, V.P. Hytönen and J. Toppari, DNA-nanoparticle actuator enabling optical monitoring of nanoscale movements induced by electric field, Nanoscale

- Link to the article: http://dx.doi.org/10.1039/C8NR05535A

Media Contact

Jussi Toppari
j.jussi.toppari@jyu.fi
358-408-054-123

http://www.jyu.fi 

Jussi Toppari | EurekAlert!
Further information:
http://dx.doi.org/10.1039/C8NR05535A

More articles from Physics and Astronomy:

nachricht JILA researchers make coldest quantum gas of molecules
22.02.2019 | National Institute of Standards and Technology (NIST)

nachricht (Re)solving the jet/cocoon riddle of a gravitational wave event
22.02.2019 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>