Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A novel nanoactuator system has been developed

28.08.2018

Researchers at University of Jyväskylä (Finland) and University of Tampere (Finland) together with BioNavis Ltd (Finland) have developed a novel nanoactuator system, where conformation of biomolecule can be tuned by electric field and probed using optical properties of gold nanoparticle.

Over the past decades, nanoactuators for detection or probing of different biomolecules have attracted vast interest for example in the fields of biomedical, food and environmental industry.


Gold nanoparticles tethered on a BSA-protein-protected gold surface via hairpin-DNA are moved reversibly using electric fields, while monitoring their position and DNA conformation optically via changes of its plasmon resonance (by color).

Credit: Jussi Toppari

To provide more versatile tools for active molecular control in nanometer scale, researchers at University of Jyväskylä and University of Tampere have devised a nanoactuator scheme, where gold nanoparticle (AuNP) tethered on a conducting surface is moved reversibly using electric fields, while monitoring its position optically via changes of its plasmon resonance.

Forces induced by the AuNP motion on the molecule anchoring the nanoparticle, can be used to change and study its conformation.

- Related studies use either organic or in-organic interfaces or materials as probes. Our idea was to fuse these two domains together to achieve the best from the both worlds, says postdoctoral researcher Kosti Tapio.

More possibilities to study molecules

According to the current study, it was shown that AuNPs anchored via hairpin-DNA molecule experienced additional discretization in their motion due to opening and closing of the hairpin-loop compared to the plain, single stranded DNA.

- This finding will enable conformational studies of variety of multiple interesting biomolecules, or even viruses, says Associate Professor Vesa Hytönen from the Protein Dynamics Group from the University of Tampere.

Besides studying the structure and behaviour of molecules, this scheme can be extended to surface-enhanced spectroscopies like SERS, since the distance between the particle and the conducting surface and hence the plasmon resonance of the nanoparticle can be reversibly tuned.

- Nanoparticle systems with post-fabrication tuneable optical properties have been developed in the past, but typically the tuning processes are irreversible. Our approach offers more customizability and possibilities when it comes to the detection wavelengths and molecules, states Associate Professor Jussi Toppari from the University of Jyväskylä.

###

The research was funded by the Academy of Finland (OMA - programmable materials) and the Finnish Cultural Foundation (the Central Finland Regional Fund). Authors thank BioNavis Ltd for equipment and essential expertise in the SPR analysis.

Additional information:

- Associate Professor Jussi Toppari, j.jussi.toppari@jyu.fi, +358 40 8054123 Molecular Electronics and Plasmonics Group, Department of Physics and Nanoscience Center, University of Jyväskylä, Finland.

- Associate Professor Vesa Hytönen, vesa.hytonen@uta.fi, +358 40 1901517 Protein Dynamics Group, Faculty of Medicine and Life Sciences and BioMediTech, University of Tampere, Finland.

- Post-doctoral Researcher Kosti Tapio, kostapio@uni-potsdam.de, +358 50 5118827 Optical Spectroscopy and Chemical Imaging, Department of Chemistry, University of Potsdam, Germany.

- Reference: K. Tapio, D. Shao, S. Auer, J.-P. Tuppurainen, M. Ahlskog, V.P. Hytönen and J. Toppari, DNA-nanoparticle actuator enabling optical monitoring of nanoscale movements induced by electric field, Nanoscale

- Link to the article: http://dx.doi.org/10.1039/C8NR05535A

Media Contact

Jussi Toppari
j.jussi.toppari@jyu.fi
358-408-054-123

http://www.jyu.fi 

Jussi Toppari | EurekAlert!
Further information:
http://dx.doi.org/10.1039/C8NR05535A

More articles from Physics and Astronomy:

nachricht Scientists see energy gap modulations in a cuprate superconductor
02.04.2020 | DOE/Brookhaven National Laboratory

nachricht BESSY II: Ultra-fast switching of helicity of circularly polarized light pulses
02.04.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Scientists see energy gap modulations in a cuprate superconductor

02.04.2020 | Physics and Astronomy

AI finds 2D materials in the blink of an eye

02.04.2020 | Information Technology

New 3D cultured cells mimic the progress of NASH

02.04.2020 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>