Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A novel graphene quantum dot structure takes the cake

24.08.2018

In a marriage of quantum science and solid-state physics, researchers at the National Institute of Standards and Technology (NIST) have used magnetic fields to confine groups of electrons to a series of concentric rings within graphene, a single layer of tightly packed carbon atoms.

This tiered "wedding cake," which appears in images that show the energy level structure of the electrons, experimentally confirms how electrons interact in a tightly confined space according to long-untested rules of quantum mechanics. The findings could also have practical applications in quantum computing.


Electrons arranged in a wedding-cake like structure, a concentric series of insulating (red) and conducting (blue) rings, due to magnetic confinement in graphene. The height of each tier represents the energy of the electrons in that tier.

Credit: C. Gutiérrez/NIST

Graphene is a highly promising material for new electronic devices because of its mechanical strength, its excellent ability to conduct electricity and its ultrathin, essentially two-dimensional structure. For these reasons, scientists welcome any new insights on this wonder material.

The researchers, who report their findings in the Aug. 24 issue of Science, began their experiment by creating quantum dots--tiny islands that act as artificial atoms--in graphene devices cooled to just a few degrees above absolute zero.

Electrons orbit quantum dots similar to the way these negatively charged particles orbit atoms. Like rungs on a ladder, they can only occupy specific energy levels according to the rules of quantum theory.

But something special happened when the researchers applied a magnetic field, which further confined the electrons orbiting the quantum dot. When the applied field reached a strength of about 1 Tesla (some 100 times the typical strength of a small bar magnet), the electrons packed closer together and interacted more strongly.

As a result, the electrons rearranged themselves into a novel pattern: an alternating series of conducting and insulating concentric rings on the surface. When the researchers stacked images of the concentric rings recorded at different electron energy levels, the resulting picture resembled a wedding cake, with electron energy as the vertical dimension.

A scanning tunneling microscope, which images surfaces with atomic-scale resolution by recording the flow of electrons between different regions of the sample and the ultrasharp tip of the microscope's stylus, revealed the structure.

"This is a textbook example of a problem--determining what the combined effect of spatial and magnetic confinement of electrons looks like--that you solve on paper when you're first exposed to quantum mechanics, but that no one's actually seen before," said NIST scientist and co-author Joseph Stroscio.

"The key is that graphene is a truly two-dimensional material with an exposed sea of electrons at the surface," he added. "In previous experiments using other materials, quantum dots were buried at material interfaces so no one had been able to look inside them and see how the energy levels change when a magnetic field was applied."

Graphene quantum dots have been proposed as fundamental components of some quantum computers.

"Since we see this behavior begin at moderate fields of just about 1 Tesla, it means that these electron-electron interactions will have to be carefully accounted for when considering certain types of graphene quantum dots for quantum computation," said study co-author Christopher Gutierrez, now at the University of British Columbia in Vancouver, who performed the experimental work at NIST with co-authors Fereshte Ghahari and Daniel Walkup of NIST and the University of Maryland.

This achievement also opens possibilities for graphene to act as what the researchers call a "relativistic quantum simulator." The theory of relativity describes how objects behave when moving at or close to light speed. And electrons in graphene possess an unusual property--they move as if they are massless, like particles of light. Although electrons in graphene actually travel far slower than the speed of light, their light-like massless behavior has earned them the moniker of "relativistic" matter. The new study opens the door to creating a table-top experiment to study strongly confined relativistic matter.

The measurements suggest that scientists may soon find even more exotic structures produced by the interactions of electrons confined to solid-state materials at low temperatures.

###

Collaborators on this work included researchers from the Massachusetts Institute of Technology, Harvard University, the University of Maryland NanoCenter and the National Institute for Material Science in Ibaraki, Japan.

Media Contact

Ben P. Stein
bstein@nist.gov
301-975-2763

 @usnistgov

http://www.nist.gov 

Ben P. Stein | EurekAlert!
Further information:
http://dx.doi.org/10.1126/science.aar2014

More articles from Physics and Astronomy:

nachricht Scientists see energy gap modulations in a cuprate superconductor
02.04.2020 | DOE/Brookhaven National Laboratory

nachricht BESSY II: Ultra-fast switching of helicity of circularly polarized light pulses
02.04.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>