Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new twist on a mesmerizing story

17.01.2019

An international team led by ETH Zurich physicist Steven Johnson established that the famed Einstein-de Haas effect has a central role in ultrafast demagnetization processes

In 1915, Albert Einstein and Wander de Haas reported that changing the magnetization of a suspended iron rod by applying an external magnetic field leads to mechanical rotation of the rod.


An international team led by physicist Steven Johnson of ETH Zurich used femtosecond time-resolved X-ray diffraction experiments to uncover what happens what happens when an iron sample is quickly demagnetized upon being hit with a laser pulse.

Credit: Gregory Stewart/SLAC National Accelerator Laboratory

This intriguing observation still serves as the textbook example of the association between magnetism and angular momentum.

New questions concerning that link arose, however, when a phenomenon known as 'ultrafast demagetization' was discovered some 20 years ago.

There, magnetization is lost on the timescale of picoseconds and below, and the issue of 'where does the angular momentum go' became the subject of intense debate. Reporting in Nature, a team of physicists at ETH Zurich, the Paul Scherrer Institute (Switzerland) and the SLAC National Accelerator Laboratory (US) now settle that very question.

They demonstrate that in a ferromagnetic iron film, the majority of the angular momentum is transferred to the lattice, slightly twisting the sample as its magnetization rapidly decreases. Showing that an 'ultrafast Einstein-de Haas effect' is at play in this scenario rules out other explanations and should provide guidance for explorations of how ultrafast demagnetization can be put to technological use.

Magnets set spinning

In ferromagnetic materials, the magnetic moments of myriad electrons align to create the characteristically strong magnetization. The electrons serve as elementary magnets, but at the same time they act also as 'miniature gyroscopes', owing to their intrinsic angular momentum (or, spin).

As a consequence, when the macroscopic magnetization of a ferromagnetic material is changed, the accompanying angular momentum inevitably changes too. Conservation of angular momentum then demands that this change is compensated.

For ferromagnetic materials, the angular momentum associated with aligned electron spins is sufficiently strong that it can be converted to mechanical rotation as angular momentum is transferred to the lattice, as demonstrated by Einstein and de Haas (a decade before the underlying concept of spin was introduced).

Tracking the fate of the angular momentum is more tricky in the case of ultrafast demagnetization, in particular as the timescales involved are extremely short -- in the past two decades, it has been shown for several metallic ferromagnets that exposure to intense laser pulses can induce a drop in magnetization within less than 100 femtoseconds.

This raises the prospect of fast optically controlled devices, but advance in the field is hindered by an incomplete understanding of the microscopic mechanisms responsible for the phenomenon.

The team around Steven Johnson, professor at the Institute for Quantum Electronics of ETH Zurich and team leader at the Paul Scherrer Institute, now shows how the angular momentum that is lost from the spin system as magnetic order decreases is absorbed by the lattice during such a short time period.

Keeping track of ultrafast changes

To have access to the short timescales involved, the team made use of the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory to perform femtosecond time-resolved X-ray diffraction experiments. Their experiment was designed such that they could sensitively detect the sort of deformations expected when angular momentum is transferred to the lattice.

Studying an iron film a few tens of nanometres in thickness, they found that the laser-induced demagnetization triggers a transverse strain wave that propagates from the surface of the sample into its bulk. That strain wave, they explain, has to come from a change in angular momentum of the lattice -- leaving only the Einstein-de Haas effect as the cause for the observed behaviour.

Fitting the experimental data to a model suggests that 80% of the angular momentum lost from the spins in the demagnetization process is transferred to the lattice. This finding therefore establishes that so-called spin-flip processes, rather than transport of spins from one location to another, underlie ultrafast demagnetization, at least in the sample they studied.

Johnson and colleagues expect, however, that similar behaviour occurs in other materials in which magnetization can be manipulated with femtosecond optical pulses.

Such ultrafast optical switching is of considerable interest with a view to device applications, for example for novel magnetic storage devices. The now-discovered new twist on the famed Einstein-de Haas effect, together with the fundamental insight it provides, should offer valuable guidelines in realizing that promise.

Media Contact

Andreas Trabesinger
trabi@ethz.ch
41-791-289-860

 @ETH_physics

https://www.phys.ethz.ch/ 

Andreas Trabesinger | EurekAlert!
Further information:
https://www.phys.ethz.ch/news-and-events/d-phys-news/2019/01/a-new-twist-on-a-mesmerising-story.html
http://dx.doi.org/10.1038/s41586-018-0822-7

More articles from Physics and Astronomy:

nachricht Appreciating the classical elegance of time crystals
20.09.2019 | ETH Zurich Department of Physics

nachricht 'Nanochains' could increase battery capacity, cut charging time
20.09.2019 | Purdue University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Wire laser material deposition – a smart way to save costs

24.09.2019 | Trade Fair News

On the trail of self-healing processes: Bayreuth biochemists reveal insights into extraordinary regenerative ability

23.09.2019 | Life Sciences

New method for the measurement of nano-structured light fields

23.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>