Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new, tunable device for spintronics

29.08.2014

An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs. The results have recently been published in the journal Nature Materials.

Spin-charge converters are important devices in spintronics, an electronic which is not only based on the charge of electrons but also on their spin and the spin-related magnetism. Spin-charge converters enable the transformation of electric into magnetic signals and vice versa.

Recently, the research group of Professor Jairo Sinova from the Institute of Physics at Johannes Gutenberg University Mainz in collaboration with researchers from the UK, Prague, and Japan, has for the first time realised a new, efficient spin-charge converter based on the common semiconductor material GaAs. Comparable efficiencies had so far only been observed in platinum, a heavy metal.

In addition, the physicists demonstrated that the creation or detection efficiency of spin currents is electrically tunable in a certain regime. This is important when it comes to real devices. The underlying mechanism, that was revealed by theoretical works of the Sinova group, opens up a new approach in searching and engineering spintronic materials. These results have recently been published in the journal Nature Materials.

Spintronics does not only make use of the electron's charge to transmit and store information but it takes also advantage of the electron's spin. The spin can be regarded as a rotation of the electron around its own axis, and generates a magnetic field like a small magnet.

In some materials, electron spins spontaneously align their direction, leading to the phenomenon of ferromagnetism which is well known e.g. in iron. Additionally, „spin-up“ or „spin-down“ directions can be used to represent two easily distinguishable states – 0 and 1 – used in information technology. This is already used for memory applications such as computer hard discs.

Making use of electron spin for information transmission and storage, enables the development of electronic devices with new functionalities and higher efficiency. To make real use of the electron spin, it has to be manipulated precisely: it has to be aligned, transmitted and detected. The work of Sinova and his colleagues shows, that it is possible to do so using electric fields rather than magnetic ones. Thus, the very efficient, simple and precise mechanisms of charge manipulation well established in semiconductor electronics can be transferred to the world of spintronic and thereby combine semiconductor physics with magnetism.

Spin-charge converters are essential tools for that. They can transform charge currents into spin currents, and vice versa. The main principle behind these converters is the so called spin-Hall effect. Jairo Sinova had already been involved in the prediction and discovery of this relativistic phenomenon in 2004.

The spin-Hall effect appears when an electric field drives electrons through a (semi-) conductor plate. Taking a look at the classical Hall effect that is known from undergraduate physics, the interaction of moving electrons and an external magnetic field forces the electrons to move to one side of the plate, perpendicular to their original direction. This leads to the so called Hall voltage between both sides of the plate.

For the spin-Hall effect electron-spins are generated by irradiating the sample with circularly polarised light. The electron spins are then parallel or antiparallel, and their direction is perpendicular to the plate and the direction of movement. The moving electron spins are now forced to one or the other side of the plate, depending on the spin orientation. The driving force behind this is the so called spin-orbit coupling, a relativistic electromagnetic effect which influences moving electron spins. This leads to the separation of both spin orientations.

To make practical use of this effect, it is essential to get a highly efficient spin separation. Up to now, platinum has been the most efficient spin-charge converter material, as it is a heavy metal, and the spin-orbit coupling of heavy metals is known to be especially strong due to the large amount of protons (positive charge) in their core.

Now, Sinova and his colleagues have shown that gallium-arsenide (GaAs), a very common and widely used semiconductor material, can be an as efficient spin-charge converter as platinum, even at room temperature, which is important for practical applications. Moreover, the physicists have demonstrated for the first time that the efficiency can be tuned continuously by varying the electric field that drives the electrons.

The reason for this – as theoretical calculations of the Sinova group have shown – lies in the existence of certain valleys in the conduction band of the semiconductor material. One can think of the conduction band and its valleys as of a motor highway with different lanes, each one requiring a certain minimum velocity. Applying a higher electric field enables a transition from one lane to the other.

Since the spin-orbit coupling is different in each lane, a transition also affects the strength of the spin-hall effect. By varying the electric field, the scientists can distribute the electron spins on the different lanes, thus varying the efficiency of their spin-charge converter.

By taking into account the valleys in the conduction band, Sinova and his colleagues open up new ways to find and engineer highly efficient materials for spintronics. Especially, since current semiconductor growth technologies are capable of engineering the energy levels of the valleys and the strength of spin-orbit coupling, e.g. by substituting Ga or As with other materials like Aluminum.

Publication:
N. Okamoto, H. Kurebayashi, T. Trypiniotis, I. Farrer, D. A. Ritchie, E. Saitoh, J. Sinova, J. Mašek, T. Jungwirth & C. H. W. Barnes
Electric control of the spin Hall effect by intervalley transitions
Nature Materials, August 2014, doi:10.1038/nmat4059

Further information:
Professor Dr. Jairo Sinova
Institute of Physics
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-21284
fax +49 6131 39-26267
e-mail: sinova@uni-mainz.de

Weitere Informationen:

http://www.sinova-group.physik.uni-mainz.de/

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Sinova conduction electrons magnetism materials phenomenon platinum semiconductor spintronics

More articles from Physics and Astronomy:

nachricht Astronomers see 'warm' glow of Uranus's rings
21.06.2019 | University of California - Berkeley

nachricht A new force for optical tweezers awakens
19.06.2019 | University of Gothenburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

For a better climate in the cities: Start-up develops maintenance-free, evergreen moss façades

25.06.2019 | Architecture and Construction

An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening

25.06.2019 | Life Sciences

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>