Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new, tunable device for spintronics

29.08.2014

An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs. The results have recently been published in the journal Nature Materials.

Spin-charge converters are important devices in spintronics, an electronic which is not only based on the charge of electrons but also on their spin and the spin-related magnetism. Spin-charge converters enable the transformation of electric into magnetic signals and vice versa.

Recently, the research group of Professor Jairo Sinova from the Institute of Physics at Johannes Gutenberg University Mainz in collaboration with researchers from the UK, Prague, and Japan, has for the first time realised a new, efficient spin-charge converter based on the common semiconductor material GaAs. Comparable efficiencies had so far only been observed in platinum, a heavy metal.

In addition, the physicists demonstrated that the creation or detection efficiency of spin currents is electrically tunable in a certain regime. This is important when it comes to real devices. The underlying mechanism, that was revealed by theoretical works of the Sinova group, opens up a new approach in searching and engineering spintronic materials. These results have recently been published in the journal Nature Materials.

Spintronics does not only make use of the electron's charge to transmit and store information but it takes also advantage of the electron's spin. The spin can be regarded as a rotation of the electron around its own axis, and generates a magnetic field like a small magnet.

In some materials, electron spins spontaneously align their direction, leading to the phenomenon of ferromagnetism which is well known e.g. in iron. Additionally, „spin-up“ or „spin-down“ directions can be used to represent two easily distinguishable states – 0 and 1 – used in information technology. This is already used for memory applications such as computer hard discs.

Making use of electron spin for information transmission and storage, enables the development of electronic devices with new functionalities and higher efficiency. To make real use of the electron spin, it has to be manipulated precisely: it has to be aligned, transmitted and detected. The work of Sinova and his colleagues shows, that it is possible to do so using electric fields rather than magnetic ones. Thus, the very efficient, simple and precise mechanisms of charge manipulation well established in semiconductor electronics can be transferred to the world of spintronic and thereby combine semiconductor physics with magnetism.

Spin-charge converters are essential tools for that. They can transform charge currents into spin currents, and vice versa. The main principle behind these converters is the so called spin-Hall effect. Jairo Sinova had already been involved in the prediction and discovery of this relativistic phenomenon in 2004.

The spin-Hall effect appears when an electric field drives electrons through a (semi-) conductor plate. Taking a look at the classical Hall effect that is known from undergraduate physics, the interaction of moving electrons and an external magnetic field forces the electrons to move to one side of the plate, perpendicular to their original direction. This leads to the so called Hall voltage between both sides of the plate.

For the spin-Hall effect electron-spins are generated by irradiating the sample with circularly polarised light. The electron spins are then parallel or antiparallel, and their direction is perpendicular to the plate and the direction of movement. The moving electron spins are now forced to one or the other side of the plate, depending on the spin orientation. The driving force behind this is the so called spin-orbit coupling, a relativistic electromagnetic effect which influences moving electron spins. This leads to the separation of both spin orientations.

To make practical use of this effect, it is essential to get a highly efficient spin separation. Up to now, platinum has been the most efficient spin-charge converter material, as it is a heavy metal, and the spin-orbit coupling of heavy metals is known to be especially strong due to the large amount of protons (positive charge) in their core.

Now, Sinova and his colleagues have shown that gallium-arsenide (GaAs), a very common and widely used semiconductor material, can be an as efficient spin-charge converter as platinum, even at room temperature, which is important for practical applications. Moreover, the physicists have demonstrated for the first time that the efficiency can be tuned continuously by varying the electric field that drives the electrons.

The reason for this – as theoretical calculations of the Sinova group have shown – lies in the existence of certain valleys in the conduction band of the semiconductor material. One can think of the conduction band and its valleys as of a motor highway with different lanes, each one requiring a certain minimum velocity. Applying a higher electric field enables a transition from one lane to the other.

Since the spin-orbit coupling is different in each lane, a transition also affects the strength of the spin-hall effect. By varying the electric field, the scientists can distribute the electron spins on the different lanes, thus varying the efficiency of their spin-charge converter.

By taking into account the valleys in the conduction band, Sinova and his colleagues open up new ways to find and engineer highly efficient materials for spintronics. Especially, since current semiconductor growth technologies are capable of engineering the energy levels of the valleys and the strength of spin-orbit coupling, e.g. by substituting Ga or As with other materials like Aluminum.

Publication:
N. Okamoto, H. Kurebayashi, T. Trypiniotis, I. Farrer, D. A. Ritchie, E. Saitoh, J. Sinova, J. Mašek, T. Jungwirth & C. H. W. Barnes
Electric control of the spin Hall effect by intervalley transitions
Nature Materials, August 2014, doi:10.1038/nmat4059

Further information:
Professor Dr. Jairo Sinova
Institute of Physics
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-21284
fax +49 6131 39-26267
e-mail: sinova@uni-mainz.de

Weitere Informationen:

http://www.sinova-group.physik.uni-mainz.de/

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: Sinova conduction electrons magnetism materials phenomenon platinum semiconductor spintronics

More articles from Physics and Astronomy:

nachricht A cavity leads to a strong interaction between light and matter
21.10.2019 | Universität Basel

nachricht A new stable form of plutonium discovered at the ESRF
21.10.2019 | European Synchrotron Radiation Facility

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Fraunhofer LBF and BAM develop faster procedure for flame-retardant plastics

21.10.2019 | Materials Sciences

For EVs with higher range: Take greater advantage of the potential offered by lightweight construction materials

21.10.2019 | Materials Sciences

Benefit and risk: Meta-analysis draws a heterogeneous picture of drug-coated balloon angioplasty

21.10.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>