Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A New Home for Optical Solitons


Laser physicists based at the Laboratory for Attosecond Physics run by the Max Planck Institute of Quantum Optics and the Ludwig-Maximilian University have, for the first time, generated dissipative solitons in passive, free-space resonators.

Solitons are the most stable of all waves. Under conditions that result in the dispersion of all other waveforms, a soliton will continue undisturbed on its solitary way, without changing its shape or velocity in the slightest.

Developement of new enhancement cavities at the Laboratory for Attosecond Physics.

Thorsten Naeser

The self-stabilizing properties of solitons explain their immense significance to the field of laser optics, in particular for the generation of ultrashort light pulses.

A team led by Dr. Ioachim Pupeza at the Laboratory of Attosecond Physics (LAP) in Munich, which is run jointly by the Max Planck Institute for Quantum Optics (MPQ) and the Ludwig-Maximilian University (LMU), has now generated optical solitons in passive free-space resonators for the first time.

The technique allows one to compress laser pulses while increasing their peak power, opening up new applications for free-space enhancement cavities in the exploration of ultrafast dynamics and in precision spectroscopy.

The young engineer John Scott Russell first observed the formation of a solitary water wave in a canal in Edinburgh in 1834. He followed it on horseback, and found that it propagated at a constant velocity for miles without changing its form.

He even built a water tank in his garden to investigate the phenomenon. But he could not have anticipated the subsequent significance of this ‘soliton’ waveform for branches of physics beyond the area of fluid dynamics. Today, optical solitons are an indispensable component of laser technology, especially in the investigation of quantum optics and ultrafast dynamics.

Physicists at the Laboratory for Attosecond Physics run by the MPQ and LMU have now, for the first time, succeeded in producing temporal optical solitons in a passive free-space resonator. To do so, they coupled 350-femtosecond infrared laser pulses with a wavelength of 1035 nanometers and a repetition rate of 100 MHz, into a newly designed passive optical resonator made up of four mirrors and a thin sapphire plate.

“The passage of the electromagnetic field of the optical pulse causes a non-linear change in the refractive index of the crystal,” as Nikolai Lilienfein, first author of the published paper, explains. “This results in a dynamic phase shift, which fully compensates for the dispersion that occurs in the resonator, while at the same time broadening the spectrum of the pulse.”

Since the power losses that inevitably occur in the resonator are simultaneously compensated for by the interferometrically coupled laser source, a soliton can in principle circulate ad infinitum in the resonator. In addition, the researchers developed a highly efficient method for controlling the energy input to the cavity soliton.

In combination, these measures allowed the team to compress the duration of input pulses by almost an order of magnitude to 37 femtoseconds while enhancing their peak power by a factor of 3200.

This enhancement-resonator technology opens up new opportunities for the generation of trains of highly precise extreme ultraviolet (XUV) attosecond pulses (an attosecond lasts for a billionth of a billionth of a second). This in turn may enable researchers to characterize the dynamics of subatomic processes – and in particular to observe the motions of electrons – in even greater detail than was possible hitherto.

“Over the past several years, we have been able to make the unique advantages of enhancement resonators available for experiments in attosecond physics. This new technique opens a path towards further significant advances in the pulse power and stability attainable with such systems, while at the same time reducing the complexity of the experimental setup,” says Dr. Ioachim Pupeza, leader of the group responsible for the new work in the LAP.

These improvements would also be of benefit in the context of XUV frequency-comb spectroscopy, which is central to the development of a new generation of optical clocks based on quantum transitions in atomic nuclei.

Wissenschaftliche Ansprechpartner:

Dr. Ioachim Pupeza
Ludwig-Maximilians-Universität (LMU)
Am Coulombwall 1, 85748 Garching
Laboratory for Attosecond Physics
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1, 85748 Garching
Phone: +49 89 32905 557


N. Lilienfein, C. Hofer, M. Högner, T. Saule, M. Trubetskov, V. Pervak, E. Fill, C. Riek, A. Leitenstorfer, J. Limpert, F. Krausz, and I. Pupeza
Temporal solitons in free-space femtosecond enhancement cavities
Nature photonics, 21st January 2019
DOI: 10.1038/s41566-018-0341-y

Weitere Informationen:

Jessica Gruber | Max-Planck-Institut für Quantenoptik

More articles from Physics and Astronomy:

nachricht Astronomers see 'warm' glow of Uranus's rings
21.06.2019 | University of California - Berkeley

nachricht A new force for optical tweezers awakens
19.06.2019 | University of Gothenburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

Latest News

For a better climate in the cities: Start-up develops maintenance-free, evergreen moss façades

25.06.2019 | Architecture and Construction

An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening

25.06.2019 | Life Sciences

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

Science & Research
Overview of more VideoLinks >>>