Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A milestone in petahertz electronics

13.03.2018

Observation of attosecond optical-field-enhanced carrier injection into the GaAs conduction band

Gallium arsenide is a technologically important narrow-band-gap semiconductor, in which the excitation of electrons from the valence into the conduction band produces charge carriers that can transport electrical current through electronics components.


(A) An intense few-cycle infrared (IR) laser pulse is combined with a single attosecond probe pulse with a spectrum in the extreme-ultraviolet (XUV) energy regime. (B) & (C) Illustration of IR-induced inter- and intra-band transitions.

Credit: Adapted from Schlaepfer et al., Nature Physics doi:10.1038/s41567-018-0069-0 (2018).

In addition to this so-called inter-band transition, carriers can also be accelerated within the individual bands as the electrons interact with the laser light. This is due to the strong electric field associated with the laser light, leading to intra-band motion.

Which of the two mechanisms dominates the response to a short intense laser pulse, and how their interplay effects the carrier injection into the conduction band, is far from obvious.

Fabian Schlaepfer and his colleagues in the group of Ursula Keller in the Department of Physics have now studied these processes for the first time at the attosecond timescale, combining transient absorption spectroscopy with state-of-the-art first-principles calculations.

As they report in a paper that appears today online in Nature Physics, they found that intra-band motion has indeed an important role, as it significantly enhances the number of electrons that get excited into the conduction band.

This finding was unexpected because intra-band motion alone is unable to produce charge carriers in the conduction band.

These results therefore represent an important step forward in understanding the light-induced electron dynamics in a semiconductor on the attosecond timescale, which will be of practical relevance for future electronics and optoelectronics devices, whose dimensions become ever smaller, and the electric fields involved ever stronger and the dynamics ever faster.

Media Contact

Andreas Trabesinger
trabi@ethz.ch
41-791-289-860

 @ETH_physics

https://www.phys.ethz.ch/ 

Andreas Trabesinger | EurekAlert!

More articles from Physics and Astronomy:

nachricht Levitating objects with light
19.03.2019 | California Institute of Technology

nachricht Stellar cartography
19.03.2019 | Leibniz-Institut für Astrophysik Potsdam

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>