Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Microscopic View on Quantum Fluctuations

14.10.2011
Scientists at the Max Planck Institute of Quantum Optics
achieve direct imaging of quantum fluctuations at absolute zero temperature.

Fluctuations are fundamental to many physical phenomena in our everyday life, such as the phase transitions from a liquid into a gas or from a solid into a liquid. But even at absolute zero temperature, where all motion in the classical world is frozen out, special quantum mechanical fluctuations prevail that can drive the transition between two quantum phases. Now a team around Immanuel Bloch and Stefan Kuhr at the Max Planck Institute of Quantum Optics (MPQ) has succeeded in directly observing such quantum fluctuations (Science, 14 October 2011, DOI: 10.1126/science.1209284).


Figure: Schematic view of the atom distribution in the optical lattice. Quantum fluctuations (white) are directly visible as neighbouring dark spots (High resolution images available at: www.quantum-munich.de/media/) MPQ/Quantum Many Body Division

Using a high resolution microscope, they were able to image quantum-correlated particle-hole pairs in a gas of ultracold atoms. This allowed the physicists to unravel a hidden order in the crystal and to characterize the different phases of the quantum gas. The work was performed together with scientists from the Theory Division at the MPQ and ETH Zurich. These measurements open new ways to characterize novel quantum phases of matter.

The scientists start by cooling a small cloud of rubidium atoms down to a temperature near absolute zero, about minus 273 degree Celsius. The ensemble is then subjected to a light field that severely restricts the motion of the particles along one-dimensional tubes of light aligned in parallel. An additional standing laser wave along the tubes creates a one-dimensional optical lattice that holds the atoms in a periodic array of bright and dark regions of light.

The atoms move in the periodic light field like electrons in solids. As these can be electric conductors or insulators, also the one-dimensional quantum gases can behave like a superfluid or like an insulator at low temperatures. In particular, the height of the optical lattice potential plays an important role: it determines whether the atom is fixed on a particular lattice site or whether is able to move to a neighbouring site. At very large lattice depths, each lattice site is occupied by exactly one atom. This highly ordered state is called a “Mott insulator”, after the British physicist and Nobel laureate Sir Neville Mott. When the lattice depth is decreased slightly, the atoms have enough energy to reach a neighbouring site by quantum mechanical tunneling. In this way, pairs of empty and doubly occupied sites emerge, so-called particle-hole pairs. Intriguingly, these quantum fluctuations also occur at absolute zero temperature, when all movement in the classical world is frozen out. The position of the quantum-correlated particle-hole pairs in the crystal is completely undetermined and is fixed only by the measurement process.

In recent experiments, the physicists around Stefan Kuhr and Immanuel Bloch had already developed a method, which allowed to image single atoms lattice site by lattice site. The atoms are cooled using laser beams, and the fluorescence photons emitted in this process are used to observe the atoms with a high resolution microscope. Holes naturally show up as dark spots, but so do doubly occupied sites as the two particles kick each other out of the lattice in the experiment. Therefore particle-hole pairs appear as two neighbouring dark lattice sites (see figure below). “With our technique, we can directly observe this fundamental quantum phenomenon for the first time”, describes doctoral student Manuel Endres enthusiastically.

The physicists measure the number of neighbouring particle-hole pairs through a correlation function. With increasing kinetic energy, more and more particles tunnel to neighbouring sites and the pair correlations increase. However, when the number of particle-hole pairs is very large, it becomes difficult to unambiguously identify them. Hence the correlation function takes on smaller values. Finally, the ordered state of a Mott insulator vanishes completely und the quantum gas becomes a superfluid. Here fluctuations of holes and particles occur independently. The correlation function measured in the experiment is very well reproduced by model calculations, which were performed by scientists from the Theory Division at the MPQ and the ETH Zurich. Interestingly, the same investigations on two-dimensional quantum-gases clearly showed that quantum fluctuations are not as prominent as in one-dimensional systems.

The scientists extended their analysis to correlations between several lattice sites along a string. Such non-local correlation functions contain important information about the underlying many-body system and can be used as an order parameter to characterize different quantum phases. In the experiment described here, such non-local order parameters have been measured for the first time. In the future, the scientists plan to use these measurements for the detection of topological quantum phases. These can be useful for robust quantum computers and could help to understand superconductivity at high temperatures. Olivia Meyer-Streng

Original Publication:
M. Endres, M. Cheneau, T. Fukuhara, C. Weitenberg, P. Schauß, C. Groß, L. Mazza,
M.C. Banuls, L. Pollet, I. Bloch, and S. Kuhr
Observation of Correlated Particle-Hole Pairs and String Order in Low-Dimensional Mott Insulators

Science, 14 October 2011, DOI: 10.1126/science.1209284

Contact:
Prof. Dr. Immanuel Bloch
Chair of Quantum Optics
LMU Munich, Schellingstr. 4
80799 München, Germany, and
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching b. München
Phone: +49 89 32905 138
e-mail: immanuel.bloch@mpq.mpg.de
Prof. Dr. Stefan Kuhr
University of Strathclyde
Department of Physics
107 Rottenrow East
Glasgow G4 0NG, U.K.
Phone: +44 141-548-3364
e-mail: stefan.kuhr@strath.ac.uk
Manuel Endres
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching b. München
Phone: +49 89 32905 214
e-mail: manuel.endres@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht Statistical inference to mimic the operating manner of highly-experienced crystallographer
18.09.2019 | Japan Science and Technology Agency

nachricht Scientists create fully electronic 2-dimensional spin transistors
18.09.2019 | University of Groningen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Stroke patients relearning how to walk with peculiar shoe

18.09.2019 | Innovative Products

Statistical inference to mimic the operating manner of highly-experienced crystallographer

18.09.2019 | Physics and Astronomy

Scientists' design discovery doubles conductivity of indium oxide transparent coatings

18.09.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>