Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Meteorite Explodes on the Moon: Q&A with a Smithsonian Geophysicist

04.06.2013
A fiery explosion on the surface of the moon, visible to the naked eye, recently surprised NASA astronomers monitoring the moon for meteorite strikes.

Occurring March 17, it was the biggest explosion in the 8-year history of NASA’s Lunar Impact Monitoring program that shoots continual video of the moon through 14-inch telescopes on Earth. NASA announced the event on May 17 after an analyst noticed the strike on a digital video. Scientists estimate the meteor weighed 88 pounds, was about 16 inches wide, and hit the moon at 56,000 miles per hour.


Steve Roy, Marshall Space Flight Center

An artist’s rendering of a small but powerful meteor strike on the moon.

In this Q&A Smithsonian Geophysicist Bruce Campbell, of the Air and Space Museum’s Center for Earth and Planetary Studies, answers a few questions about the explosion and the geologic processes that shape the moon’s surface. For years Campbell has been using radio telescopes to see through the moon’s thick layer of dust and debris and create a detailed radar map of the moon’s ancient bedrock topography.

Q: Can the crater caused by this impact be seen from Earth?
Campbell: No. Based on the brightness of the flash researchers estimate the crater to be about 20 meters across, which is too small to be seen with a telescope from Earth. The Lunar Reconnaissance Orbiter [a NASA spacecraft currently orbiting the moon] however will be able to see the crater when it passes over that area of the moon sometime later this year. The Orbiter, which can see features down to about one-half meter in size, should be able to take a really nice image of the crater. It will be easy to spot as it should have a wide and bright spray of ejected material surrounding it.
Q: How deep is the moon’s dust at the spot where this meteorite hit?
Campbell: In this area [a region known as Mare Imbrium] the dust layer is easily anywhere from 15 to 25 feet deep. It’s a very thick layer and I don’t think this meteorite was big enough to have punched through all that dust to reach the moon’s bedrock. The energy of the explosion pushed the dust and other material upward and outward in large parabolic arcs. On Earth atmospheric drag would slow the dust making it fall at a much shorter distance from the crater than on the moon.
Q: Did the meteorite sink into the moon’s dust or break apart?
Campbell: Almost no recognizable large chunk of a meteorite like this one is going to survive. It hits the ground at such a speed that you actually get a shockwave inside the meteorite. The shockwave starts at the front where the meteorite hits and by the time it reaches the back of the meteorite it explodes. And so the meteorite is spread out all over that deposit of material, some in the crater itself and a lot in the spray of material around the crater.
Q: With no wind or water on the moon to cause erosion, is this crater now a permanent feature of the Moon?

Campbell: There is erosion on the moon which is coming from the exact process that caused this new crater. Think about it, that new 20-meter crater obliterated all the little craters that were in that spot before it. And it threw out dust that covered up and smoothed out other areas.

But even when fresh bedrock from beneath the dust is exposed by very large meteorite strikes, these new rocks are eventually broken down by the little bits of space dust zipping in and striking the moon day in and day out. In general, these tiny particles are traveling extremely fast. Most hit the ground at 2 kilometers per second or more. Even a particle of dust that’s moving at several kilometers per second will break a pretty good chunk off a rock on the ground.

Undetectable from Earth, these little particles are the dominant erosive effect on the moon…on a cosmic time scale these particles are just raining in. This crater is just part of that endless process of the soil gradually building up and rocks on the surface being broken down and craters being smoothed out. If you look at the pictures, the moon’s features are very rounded with gentle slopes; there are almost no sharp-edged hills on the moon.

Alison Mitchell | Newswise
Further information:
http://www.si.edu

More articles from Physics and Astronomy:

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>