Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Material Could Act as a Nanofridge for Microchips

09.10.2008
In the past few years, the design and manufacturing of circuits at nanoscopic scale for integrated devices has become one of the frontier fields in new material science and technology.

The significant reduction achieved in these devices often is accompanied by new discoveries in how they behave precisely when the systems are of extremely small dimensions. Understanding this new physics at nanoscopic scale at the same time has enabled researchers to study the possibility of designing new materials with innovative characteristics.

One of the most crucial properties to take into account when designing chips is the thermal conductivity of the devices integrated in the chip, i.e. their capacity to remove or accumulate energy. This property is essential to control the heating of micro-sized circuits, which represents one of the current physical limitations to computing potential. Combining heat and electricity creates thermoelectric effects which would allow circuits to cool down and would increase the power of computing. Until now, no material has contained the properties needed to be efficient enough in terms of thermoelectric behaviour.

This is why obtaining materials at nanometric scale can be useful for the improvement of thermoelectric properties, since these materials can achieve a significant reduction in thermal conductivity as well as maintain a high level of electrical conductivity, which is needed to obtain high thermoelectric efficiency.

In this project, researchers of the UAB Department of Physics and the Barcelona Institute of Materials Science (ICMAB-CSIC) have worked together to develop a new material based on supernets formed with two alternative layers, one made of silicon (Si) and the other of germanium (Ge) nanocrystals (quantum dots). In comparison to previous improvements, this project proposes to place the quantum dots in an uncorrelated fashion on consecutive layers. In other words, the dots on one layer would not be vertically aligned with those of the lower layer.

This is achieved by introducing a small sub-layer of carbon between each layer of silicon and Ge nanodots, which hides the information of the quantum dots found on the lower levels. The main result of the uncorrelation between consecutive layers is the reduction in thermal conductivity, since it becomes more difficult to transport heat perpendicularly from the multilayers. Researchers were able to prove that this reduction reached a factor in excess of 2 when compared to structures with a vertical correlation of dots. This could greatly influence the design of new materials with improved thermoelectric characteristics and pave the way for the creation of nanofridges for common semiconductor devices, given that the structure is compatible with silicon technology.

Ge-based structures also could be used in high-temperature applications, such as in recovering heat generated in combustion processes and converting it to electrical energy.

A second and important aspect of this project is the theoretic study of the thermal properties this new material contains through a simple model based on the modification of the Fourier heat equation, which can predict its behaviour according to the dimensions of its characteristics. Thus with the help of results from previous studies, researchers were able to understand the theoretical foundations of thermal behaviour of this nanostructured material.

The research was coordinated by Javier Rodríguez, professor at the UAB Department of Physics, with the participation of Jaime Alvarez, Xavier Alvarez and David Jou, also from the UAB Department of Physics, as well as the collaboration of CSIC researchers Paul Lacharmoise, Alessandro Bernardi, Isabel Alonso, and ICREA researcher Alejandro Goñi. Part of the research was carried out at the Nanotechnology Lab of the MATGAS research centre located at the UAB Research Park. The research paper was recently published in Applied Physics Letters and research members are now working to develop a material with a good level of electric conductivity through controlled doping of the structure.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>