Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A map of Rosetta's comet

12.09.2014

The surface of comet 67P/Churyumov-Gerasimenko can be divided into several morphologically different regions

High-resolution images of comet 67P/Churyumov-Gerasimenko reveal a unique, multifaceted world. ESA's Rosetta spacecraft arrived at its destination about a month ago and is currently accompanying the comet as it progresses on its route toward the inner solar system.


In this view of the "belly" and part of the "head" of the comet, several morphologically different regions are indicated.

© ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA


Jagged cliffs and prominent boulders: In this image, several of 67P's very different surface structures become visible. The left part of the images shows the side wing of the comet's "body", while the right is the back of its "head". The image was taken by OSIRIS, Rosetta's scientific imaging system, on September 5th, 2014 from a distance of 62 kilometers. One pixel corresponds to 1.1 meters.

© ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Scientists have now analyzed images of the comet's surface taken by OSIRIS, Rosetta's scientific imaging system, and allocated several distinct regions, each of which is  defined by special morphological characteristics. This analysis provides the basis for a detailed scientific description of 67P's surface.

„Never before have we seen a cometary surface in such detail“, says OSIRIS Principal Investigator Holger Sierks from the Max Planck Institute for Solar System Science in Germany. In some of the images, one pixel corresponds to 75 centimeters scale on the nucleus. „It is a historic moment, we have an unprecedented resolution to map a comet“, he adds.

... more about:
»CNES »DLR »ESA »Instituto »OSIRIS »Phone »Rosetta »Sun »activity »morphological

With areas dominated by cliffs, depressions, craters, boulders or even parallel grooves, 67P displays a multitude of different terrains. While some of these areas appear to be quiet, others seem to be shaped by the comet's activity. As OSIRIS images of the comet's coma indicate, the dust that 67P casts into space is emitted there.

„This first map is, of course, only the beginning of our work“, says Sierks. „At this point, nobody truely understands, how the morphological variations we are currently witnessing came to be.“ As both 67P and Rosetta travel closer to the Sun in the next months, the OSIRIS team will monitor the surface looking for changes.

While the scientists do not expect the borderlines of the comet's regions to vary dramatically, even subtle transformations of the surface may help to explain how cometary activity created such a breathtaking world. The maps will also offer valuable insights for Rosetta's Lander Team and the Rosetta orbiter scientists to determine a primary and backup landing site from the earlier preselection of five candidates.

Rosetta is an ESA mission with contributions from its member states and NASA. Rosetta's Philae lander is provided by a consortium led by DLR, MPS, CNES and ASI. Rosetta will be the first mission in history to rendezvous with a comet, escort it as it orbits the Sun, and deploy a lander to its surface.

The scientific imaging system OSIRIS was built by a consortium led by the Max Planck Institute for Solar System Research (Germany) in collaboration with CISAS, University of Padova (Italy), the Laboratoire d'Astrophysique de Marseille (France), the Instituto de Astrofísica de Andalucia, CSIC (Spain), the Scientific Support Office of the European Space Agency (The Netherlands), the Instituto Nacional de Técnica Aeroespacial (Spain), the Universidad Politéchnica de Madrid (Spain), the Department of Physics and Astronomy of Uppsala University (Sweden), and the Institute of Computer and Network Engineering of the TU Braunschweig (Germany). OSIRIS was financially supported by the national funding agencies of Germany (DLR), France (CNES), Italy (ASI), Spain (MEC), and Sweden (SNSB) and the ESA Technical Directorate.

Contact 

Dr. Birgit Krummheuer

Press and Public Relations

Max Planck Institute for Solar System Research, Göttingen

Phone: +49 551 384979-462

Email: Krummheuer@mps.mpg.de
 

Dr. Holger Sierks

Max Planck Institute for Solar System Research, Göttingen

Phone: +49 551 384979-242

Email: sierks@mps.mpg.de

Dr. Birgit Krummheuer | Max-Planck-Institute
Further information:
http://www.mpg.de/8407334/67p_churyumov-gerasimenko_map

Further reports about: CNES DLR ESA Instituto OSIRIS Phone Rosetta Sun activity morphological

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>