A light transistor based on photons and phonons

False-colour scanning electron micrograph of the micro-resonator used in the study of OMIT. The red top part is a silica toroid; it is supported by a silicon pillar (gray) on a semiconductor chip. The silica toroid serves both, as an excellent optical resonator for photons, and it supports mechanical vibrations (phonons). The mutual coupling of photons and phonons can be harnessed to control the propagation of light all-optically.<br>

The ability to control the propagation of light is at the technological heart of today’s telecommunication society. Researchers in the Laboratory of Photonics and Quantum Measurement led by Prof. Tobias J. Kippenberg (now EPFL) have discovered a novel principle to accomplish this, which is based on the interaction of light (photons) with mechanical vibrations (phonons).

As they report in a forthcoming publication (Science Express, November 11, 2010), this scheme allows to control the transmission of a light beam past a chip-based optical micro-resonator directly by a second, stronger light beam. The new device could have numerous applications in telecommunication and quantum information technologies.

So far, this effect has only been observed in the interaction of laser light with atomic vapours, based on an effect referred to as “electromagnetically induced transparency” (EIT). EIT has been used to manipulate light propagation at an impressive level: slowing of light pulses and even full storage has been achieved. However, EIT is restricted to light of wavelengths matching the natural resonances of atoms. Also, these technologies are hardly compatible with chip-scale processing.

The novel principle, discovered by a team of scientists including Dr. Albert Schliesser and Dr. Samuel Deléglise and doctoral students Stefan Weis and Rémi Rivière, is based on optomechanical coupling of photons to mechanical oscillations inside an optical micro-resonator. These optomechanical devices are fabricated using standard nanofabrication methods – drawing on the techniques used in semiconductor integrated circuit processing available in the cleanroom of EPFL. They can both trap light in orbits and act, at the same time, as mechanical oscillators, possessing well-defined mechanical vibrational frequencies just like a tuning fork.

If light is coupled into the resonator, the photons exert a force: radiation pressure. While this force has been used for decades to trap and cool atoms, it is only in the last five years that researchers could harness it to control mechanical vibrations at the micro- and nanoscale. This has led to a new research field: cavity optomechanics, which unifies photonics and micro- and nanomechanics. The usually small radiation pressure force is greatly enhanced within an optical micro-resonator, and can therefore deform the cavity, coupling the light to the mechanical vibrations. For the optomechanical control of light propagation, a second, “control” laser can be coupled to the resonator in addition to the “signal” laser. In the presence of the control laser, the beating of the two lasers causes the mechanical oscillator to vibrate – which in turn prevents the signal light to enter the resonator by an optomechanical interference effect, leading eventually to a transparency window for the signal beam.

For a long time the effect remained elusive, “We have known for more than two years that the effect existed,” says Dr. Schliesser, who theoretically predicted the effect early on. “Once we knew where to look it was right there,” says Stefan Weis, one of the lead authors of the paper. In the subsequent measurements, “the agreement of theory and experiment is really striking”, comments Dr. Deléglise.

In contrast to atoms, this novel form of induced transparency does not rely on naturally occurring resonances and could therefore also be applied to previously inaccessible wavelength regions such as the technologically important telecommunication window (near-infrared). Optomechanical systems allow virtually unlimited design freedom using wafer-scale nano- and microfabrication techniques. Furthermore, already a single optomechanical element can achieve unity contrast, which in the atomic case normally not is possible.

The novel effect, which the researchers have termed “OMIT” (optomechanically induced transparency) to emphasize the close relation to EIT, may indeed provide entirely new functionality to photonics. Future developments based on OMIT could enable the conversion of a stream of photons into mechanical excitations (phonons). Such conversion of radio frequency signals into mechanical vibrations is used in cell-phone receivers today for narrow-band filtering, a principle that could potentially be applied to optical signals as well.

Furthermore, using OMIT, novel optical buffers could be realized that allow storing optical information for up to several seconds. Finally, with research groups all over the world reaching for control of optomechanical systems at the quantum level, the switchable coupling demonstrated in this work could serve as an important interface in hybrid quantum systems. Olivia Meyer-Streng

Original publication:
S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser,T.J. Kippenberg
Optomechanically induced transparency
Science (Science Express, November 11, 2010)
Contact:
Prof. Dr. Tobias Kippenberg
Max Planck Institute of Quantum Optics and Ecole Polytechnique Fédérale de Lausanne
Phone: +41 – 79 / 5350 016
E-mail: tobias.kippenberg@mpq.mpg.de
http://www.mpq.mpg.de/k-lab/
Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 – 89 / 32905 – 213
e-mail: olivia.meyer-streng@mpq.mpg.de

Media Contact

Dr. Olivia Meyer-Streng Max-Planck-Institut

More Information:

http://www.mpq.mpg.de/k-lab/

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors