Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Leap Into Quantum Technology

09.11.2018

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve these objectives: quantum states are used to transport information, which eliminates unauthorized copying or reading due to fundamental physical laws.


Micropillars with quantum dots are to help make data communication secure. They are developed at the University of Würzburg.

(Picture: Tobias Huber)

To support the leap into quantum technology, the German Federal Ministry of Education and Research (BMBF) funds the new joint project titled "Quanten-Link-Erweiterung" (English: quantum link extension, short Q.Link.X) with 14.8 million euro over the next three years.

"Our goal is to develop physically secure networks based on optical fiber", says Professor Dieter Meschede who works at the Institute of Applied Physics in Bonn, which makes the official statements on behalf of the joint project.

Quantum communication is still limited

However, this paradigm shift in data and message encryption – away from algorithmic processes to quantum technology – is limited:

When transferring quantum information in fiber with light particles (photons), transmission losses occur inevitably. As a result, transmission links are presently limited to less than 100 kilometers.

"We intend to use quantum repeaters to overcome this barrier without compromising security," says Dieter Meschede. In telecommunication, a repeater is an electronic device that processes or amplifies a signal.

It receives a signal, processes and retransmits it to extend the signal range and bridge a longer distance. The BMBF funded project aims to drive the development of such quantum repeaters.

Aim is a complete communication link

Three different platforms are used for this purpose: quantum dots, diamond color centers and a combination of atomic and ionic systems. They will be used to implement transmission links of initially up to ten or 100 kilometers and compare the advantages of the respective systems with each other.

"For the first time, Q.Link.X studies and develops not just individual components of a quantum repeater, but complete communication links," Meschede says.

These activities are set to prepare a technology that might be suitable to cover longer distances of several hundred to thousand kilometers using optical fiber, at a later stage.

University of Würzburg: quantum dots in micropillars

Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany, receives more than 1.2 million euro funding from the joint project. On the Hubland Campus, Professor Sven Höfling and his team at the Chair for Applied Physics are working to build a quantum repeater segment based on semiconductor quantum dots in micropillars. The JMU team designs and builds the micropillars and inserts them into the communication link.

Quantum information from a photon is stored in the quantum dots of the micropillars, subsequently read and coded back into a photon. "The interference of two photons from two remote quantum dots allows generating an entangled quantum state that exists simultaneously in both remote quantum dots," says Dr. Tobias Huber, a JMU physicist. Subsequently, this state can be read out again at both quantum dots. In a network, it should be possible to extend this state sequentially from repeater to repeater, to cover any distance.

24 partners contribute to Q.Link.X

The involvement of industry partners and consultants from the beginning of the project facilitates the viability from an industrial an engineering point of view. The results are to be exploited in Germany through patents and spin-offs of the consortium. Q.Link.X has brought together 24 partners from university research institutes and industrial labs to study the key technology of quantum repeaters.

Wissenschaftliche Ansprechpartner:

Dr. Tobias Huber, Chair for Applied Physics, University of Würzburg, T +49 931 31-84117, tobias.huber@physik.uni-wuerzburg.de

Prof. Dr. Sven Höfling, Chair for Applied Physics, University of Würzburg, +4993131-83613, sven.hoefling@physik.uni-wuerzburg.de

Weitere Informationen:

https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/q-link.x Project website

Robert Emmerich | Julius-Maximilians-Universität Würzburg

More articles from Physics and Astronomy:

nachricht Heat flow through single molecules detected
19.07.2019 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Better thermal conductivity by adjusting the arrangement of atoms
19.07.2019 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>