Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Leap Into Quantum Technology

09.11.2018

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve these objectives: quantum states are used to transport information, which eliminates unauthorized copying or reading due to fundamental physical laws.


Micropillars with quantum dots are to help make data communication secure. They are developed at the University of Würzburg.

(Picture: Tobias Huber)

To support the leap into quantum technology, the German Federal Ministry of Education and Research (BMBF) funds the new joint project titled "Quanten-Link-Erweiterung" (English: quantum link extension, short Q.Link.X) with 14.8 million euro over the next three years.

"Our goal is to develop physically secure networks based on optical fiber", says Professor Dieter Meschede who works at the Institute of Applied Physics in Bonn, which makes the official statements on behalf of the joint project.

Quantum communication is still limited

However, this paradigm shift in data and message encryption – away from algorithmic processes to quantum technology – is limited:

When transferring quantum information in fiber with light particles (photons), transmission losses occur inevitably. As a result, transmission links are presently limited to less than 100 kilometers.

"We intend to use quantum repeaters to overcome this barrier without compromising security," says Dieter Meschede. In telecommunication, a repeater is an electronic device that processes or amplifies a signal.

It receives a signal, processes and retransmits it to extend the signal range and bridge a longer distance. The BMBF funded project aims to drive the development of such quantum repeaters.

Aim is a complete communication link

Three different platforms are used for this purpose: quantum dots, diamond color centers and a combination of atomic and ionic systems. They will be used to implement transmission links of initially up to ten or 100 kilometers and compare the advantages of the respective systems with each other.

"For the first time, Q.Link.X studies and develops not just individual components of a quantum repeater, but complete communication links," Meschede says.

These activities are set to prepare a technology that might be suitable to cover longer distances of several hundred to thousand kilometers using optical fiber, at a later stage.

University of Würzburg: quantum dots in micropillars

Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany, receives more than 1.2 million euro funding from the joint project. On the Hubland Campus, Professor Sven Höfling and his team at the Chair for Applied Physics are working to build a quantum repeater segment based on semiconductor quantum dots in micropillars. The JMU team designs and builds the micropillars and inserts them into the communication link.

Quantum information from a photon is stored in the quantum dots of the micropillars, subsequently read and coded back into a photon. "The interference of two photons from two remote quantum dots allows generating an entangled quantum state that exists simultaneously in both remote quantum dots," says Dr. Tobias Huber, a JMU physicist. Subsequently, this state can be read out again at both quantum dots. In a network, it should be possible to extend this state sequentially from repeater to repeater, to cover any distance.

24 partners contribute to Q.Link.X

The involvement of industry partners and consultants from the beginning of the project facilitates the viability from an industrial an engineering point of view. The results are to be exploited in Germany through patents and spin-offs of the consortium. Q.Link.X has brought together 24 partners from university research institutes and industrial labs to study the key technology of quantum repeaters.

Wissenschaftliche Ansprechpartner:

Dr. Tobias Huber, Chair for Applied Physics, University of Würzburg, T +49 931 31-84117, tobias.huber@physik.uni-wuerzburg.de

Prof. Dr. Sven Höfling, Chair for Applied Physics, University of Würzburg, +4993131-83613, sven.hoefling@physik.uni-wuerzburg.de

Weitere Informationen:

https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/q-link.x Project website

Robert Emmerich | Julius-Maximilians-Universität Würzburg

More articles from Physics and Astronomy:

nachricht Scientists see energy gap modulations in a cuprate superconductor
02.04.2020 | DOE/Brookhaven National Laboratory

nachricht BESSY II: Ultra-fast switching of helicity of circularly polarized light pulses
02.04.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>