Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Keen Sense for Molecules

23.02.2018

Laser physicists from the Laboratory of Attosecond Physics at the Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics have developed an extremely powerful broadband infrared light source. This light source opens up a whole new range of opportunities in medicine, life science, and material analysis.

Infrared light has a keen sense for molecules. With the help of this light, researchers are able to go in search of the small particles which shape and determine our lives. The phenomenon, in which infrared light sets molecules in vibration, is pivotal in this search. Scientists are exploiting this phenomenon by using infrared light to analyze the molecular makeup of samples.


The lasersystem developed by the LMU physicists is the first one worldwide, that produces infrared lightpulses with a power of 19 Watt and wavelengths of about 20.000 nanometres.

Photo: Thorsten Naeser

In the hope that this analysis can become even more exact, the laser physicists from the Laboratory of Attosecond Physics (LAP) at the Ludwig-Maximilians-Universität (LMU) in Munich and the Max Planck Institute of Quantum Optics (MPQ) have developed an infrared light source that has an enormously broad spectrum of wavelengths. This light source is the first of its kind worldwide and can be used to help detect the smallest amounts of molecules in liquids like blood.

When infrared light encounters molecules, they begin to vibrate. In this process, each particular type of molecule is brought into motion by a very specific set of different wavelengths in the range from 3 to 20 micrometers.

By examining the wavelengths of the light being emitted after this excitation, researchers are able to derive the molecular composition of the sample. The more powerful the source of infrared light and the more wavelengths utilized, the higher the chance of determining the sample composition, in for example breath or blood.

The LAP physicists have set themselves this challenge. They use an infrared light source which is based on a new disc laser that has a wavelength spectrum spanning from 5 to 20 micrometers (in comparison a person is able to see light in a range between 0.35 and 0.7 micrometers). The new system consists of a short pulse laser that emits 77,000 pulses per second. The pulses themselves are mere femtoseconds long (a femtosecond is one-millionth of one billionth of a second).

With this system, which has an output power of 19 Watt, researchers have achieved the broadest simultaneous infrared coverage from a solid state laser. Moreover, the infrared laser pulses emitted should correspond to a sub-cycle pulse in time domain.

This new light source opens up countless opportunities for the physicists of better understanding the fundamental properties of solid and soft matter. The analysis of light spectrums after interactions with material with infrared spectroscopy and microscopy allows the more precise and accurate conceptualization of research methods.

The LAP team utilizes these methods for driving the so-called “Broadband Infrared Diagnostics” project. In the framework of this project, the scientists are interested in assessing the molecular makeup of blood and breath. Should particular molecules be present, like the kind that appear in cancer patients, this could prove to be a reliable indicator that further examination is needed. A new diagnostic tool for the early detection of diseases might just have been developed. Thorsten Naeser

Original publication:

Jinwei Zhang, Ka Fai Mak1, Nathalie Nagl, Marcus Seidel, Dominik Bauer, Dirk Sutter, Vladimir Pervak, Ferenc Krausz, and Oleg Pronin
Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm-1
Light: Science and Applications (2018) 7, 17180; doi:10.1038/lsa.2017.180

Contact:

Dr. Oleg Pronin
Ludwig-Maximilians-Universität Munich
Chair of Experimental Physics - Laser Physics
Am Coulombwall 1
85748 Garching, Germany
Phone: +49 (0)89 289 -54059
E-mail: oleg.pronin@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 - 213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>