Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A galactic test will clarify the existence of dark matter

26.06.2018

Researchers at the University of Bonn and the University of California at Irvine used sophisticated computer simulations to devise a test that could answer a burning question in astrophysics: is there really dark matter? Or does Newton's gravitational law need to be modified? The new study, now published in the Physical Review Letters, shows that the answer is hidden in the motion of the stars within small satellite galaxies swirling around the Milky Way.

Using one of the fastest supercomputers in the world, the scientists have simulated the matter distribution of the so-called satellite “dwarf” galaxies. These are small galaxies that surround, for instance, the Milky Way or Andromeda.


Simulation: This picture shows the distribution of dark matter (above) and stars (below).

© E. Garaldi, C. Porciani, E. Romano-Díaz /University of Bonn for the ZOMG Collaboration

The researchers focused on a relationship called “radial acceleration relation” (RAR). In disk galaxies, stars move in circular orbits around the galactic center. The acceleration that forces them to constantly change direction is caused by the attraction of matter in the galaxy. The RAR describes the relationship between this acceleration and the one caused by the visible matter only. It provides an insight into the structure of galaxies and their matter distribution.

“We have now simulated, for the first time, the RAR of dwarf galaxies on the assumption that dark matter exists,” explains Prof. Dr. Cristiano Porciani of the Argelander Institute for Astronomy at the University of Bonn. “It turned out that they behave as scaled-down versions of larger galaxies.”

But what if there is no dark matter and instead gravity “works” differently than Newton thought? “In this case the RAR of dwarf galaxies depends strongly on the distance to their parent galaxy, while this does not happen if dark matter exists”, explains the researcher Emilio Romano-Díaz.

This difference makes the satellites a powerful probe for testing whether dark matter really exists. The Gaia spacecraft, which was launched by the European Space Agency (ESA) in 2013, could already provide an answer. It was designed to study the stars in the Milky Way and its satellite galaxies in unprecedented detail and has collected a large amount of data.

However, it will probably take years to solve this riddle. “Individual measurements are not enough to test the small differences we have found in our simulations”, explains doctoral student Enrico Garaldi. “But repeatedly taking a close look at the same stars improves the measurements every time. Sooner or later it should be possible to determine whether the dwarf galaxies behave like in a universe with dark matter - or not.”

The cement that holds galaxies together

This question is one of the most pressing issues in cosmology today. The existence of dark matter was already suggested more than 80 years ago by the Swiss astronomer Fritz Zwicky. He realized that galaxies move so fast within galaxy clusters that they should actually drift apart. He therefore postulated the presence of invisible matter which, due to its mass, exerts sufficient gravity to keep galaxies on their observed orbits. In the 1970s, his US colleague Vera Rubin discovered a similar phenomenon in spiral galaxies like the Milky Way: they rotate so quickly that the centrifugal force should tear them apart if only visible matter was present.

Today, most physicists are convinced that dark matter makes up about 80 percent of the mass in the universe. Since it does not interact with light, it is invisible to telescopes. Yet, assuming its existence provides an excellent fit to a number of other observations - such as the distribution of background radiation, an afterglow of the Big Bang. Dark matter also provides a good explanation for the arrangement and formation rate of galaxies in the universe.

However, despite numerous experimental efforts, there is no direct proof that dark matter exists. This led astronomers to the hypothesis that the gravitational force itself might behave differently than previously thought. According to the theory called MOND (MOdified Newtonian Dynamics), the attraction between two masses obeys Newton's laws only up to a certain point. At very small accelerations, such as those prevailing in galaxies, gravity becomes considerably stronger. Therefore, galaxies do not tear apart due to their rotational speed and the MOND theory can dispense with the mysterious star putty.

The new study opens up the possibility for astronomers to test these two hypotheses in an unprecedented regime.

The project was funded by the German Research Foundation (DFG) through TR333 and SFB956. The calculations were made possible by the Europe-wide PRACE network and were carried out on the Dutch supercomputer Cartesius, at SURFsara, The Netherlands.

Publication: Enrico Garaldi, Emilio Romano-Díaz, Cristiano Porciani and Marcel S. Pawlowski: Radial acceleration relation of ΛCDM satellite galaxies; Physical Review Letters; DOI: 10.1103/PhysRevLett.120.261301

Contacts:

Prof. Dr. Cristiano Porciani
Argelander-Institut für Astronomie der Universität Bonn
Tel.:+49 (0) 228 733664
E-mail: cporcian@uni-bonn.de

Dr. Emilio Romano-Díaz
Argelander-Institut für Astronomie der Universität Bonn
Tel.:+49 (0) 228 733657
E-mail: emiliord@uni-bonn.de

Enrico Garaldi
Argelander-Institut für Astronomie der Universität Bonn
Tel.: +49 (0) 228 733433
E-mail: egaraldi@uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

More articles from Physics and Astronomy:

nachricht The geometry of an electron determined for the first time
23.05.2019 | Universität Basel

nachricht Galaxies As “Cosmic Cauldrons”
23.05.2019 | Universität Heidelberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Dissolving protein traffic jam at the entrance of mitochondria

23.05.2019 | Life Sciences

Fraunhofer IBMT at BIO 2019: Automation solutions for workflows in stem cell process engineering

23.05.2019 | Trade Fair News

Galaxies As “Cosmic Cauldrons”

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>