Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A four-dimensional picture of our three-dimensional world

29.09.2008
Scientists use a theory that exists in higher dimensions to better understand the process by which a neutron decays into a proton

An international team of scientists from RIKEN at Brookhaven National Laboratory (BNL) and elsewhere in the USA, Japan and the UK are testing the Standard Model—the foundation of high-energy physics that unifies three of the four known forces found in nature—by calculating a well-known nuclear decay process (1).

Summarizing the work, Thomas Blum, a member of the team, says: “We want to understand the structure of the particles in the nucleus from the standpoint of the Standard Model, in general, and quantum-chromodynamics (QCD), in particular. QCD is the theoretical basis for the strong force between quarks, the particles that make up neutrons, protons and other particles that are the building blocks of matter in our universe.”

Most of the predictions of the Standard Model, which was developed in the 1960s, can only be tested at high-energy particle accelerators, such as CERN in Switzerland, or the Relativistic Heavy Ion Collider (RHIC) at BNL in the USA. In contrast, beta decay in radioactive nuclei is a well-known process that can be measured, extremely accurately, with a simple experimental set-up. Beta-decay occurs when a neutron emits an electron and a massless particle called a neutrino (Fig. 1). In so doing, the neutron turns into a proton.

Blum and colleagues calculated the part of the decay rate of the neutron that depends on QCD, using a numerical method called ‘lattice gauge theory’ in which each point on a grid corresponds to a point in space–time. By solving the problem on successively finer grids, the calculations approach the true ‘continuum limit’ of the real world. The state-of-the-art calculations were made possible through the use of the QCDOC supercomputers at Columbia University, the RIKEN BNL Research Center, and the University of Edinburgh.

Most implementations of lattice gauge theory correspond to three spatial dimensions and one time dimension, but Blum and his colleagues use a ‘mathematical trick’ called ‘domain wall fermions’. They perform their calculations in four space dimensions—only reducing their answer back to the three-dimensional world at the end. The trick allows the group to capture important physics that most three-dimensional theories cannot.

An important aspect of the work lies in being able to test a sophisticated numerical technique that is consistent with the Standard Model and QCD against a simple result—neutron beta-decay. Confirmation that their results are accurate gives theorists the confidence to pursue increasingly complex problems in particle and nuclear physics.

1. Yamazaki, T., Aoki, Y., Blum, T., Lin, H.W., Lin, M. F., Ohta, S., Sasaki, S., Tweedie, R.J. & Zanotti, J.M. Nucleon axial charge in (2+1)-flavor dynamical-lattice QCD with domain-wall fermions. Physical Review Letters 100, 171602 (2008).

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/523/
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Immortal quantum particles: the cycle of decay and rebirth
14.06.2019 | Technische Universität München

nachricht Small currents for big gains in spintronics
13.06.2019 | University of Tokyo

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

Rules of brain architecture revealed in large study of neuron shape & electrophysiology

18.06.2019 | Life Sciences

Research highlights possible targets to help tackle Crohn's disease

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>