Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A dance of two: Tailoring interactions between remote fluids of excitons

13.05.2019

An international collaboration involving European, Israeli, and US scientists realize for the first time strong and directionally dependent interactions in quantum liquids of excitons, which contrasts with the spatial isotropy of the coupling between charged particles. This spatial anisotropy affects the way particles arrange themselves in space and opens routes to artificially created exotic states of matter. The results were published in Physical Review X.

"Birds of a feather flock together": this old proverb may apply to several life circumstances but it certainly does not apply to electric charges: charges of same polarity always repel each other, while only charges of opposite polarity attract. One consequence of the attraction between dissimilar charges is the formation of excitons (electron-hole-pairs) in semiconductors.


Interaction between excitonic dipoles: (a) excitons in stacked bilayers consisting of GaAs quantum wells (QWs). (b) Excitons in the upper bilayer induce, via the attractive inter-bilayer excitonic interaction, exciton accumulation in the lower bilayer.

Credit: Paulo V. Santos, Mikhail Lemeshko, and Ronen Rapaport

Usage Restrictions: The image may only be used with appropriate caption and credit.

Such pairs of negatively charged electrons and positively charged holes can be created via the absorption of light quanta (photons). Excitons are so-called quasi-particles that results from the bonding of an electron and a hole by the attractive electrostatic coulomb interaction between them. Excitons are mobile but not stable since the electrons and holes can quickly recombine leading to the emission of a photon.

Long-living excitons can, however, be created in special semiconductor bilayers consisting of two closely spaced quantum wells separated by a thin potential barrier (see Figure). If a bias voltage is applied to the structure the electrons and holes that form the exciton will be stored in separate quantum wells: this charge separation significantly increases the recombination lifetime.

These long living excitons acquire a dipole moment p and are thus known as dipolar (or indirect) excitons.

The excitons as well as dipolar excitons are neutral particles to the outside and the question arises how dipolar excitons interact with each other. The answer can be found by considering them to be aligned dipoles.

Contrary to the electrostatic coulomb interaction between two charges, which only depends on the distance between them, the interaction between two dipoles depends both on the relative orientation between their dipoles and the vector connecting them. For aligned dipoles like the dipolar excitons in the figure, the interaction changes from repulsive to attractive as the angle between them increases from 0 to 90 degrees.

Experiments on dipolar excitons carried out so far used excitons in a single bilayer, where one can only probe the repulsive component of the dipolar interaction. Now an international team of researchers from Paul-Drude-Institut für Festkörperelektronik in Berlin, the Hebrew University of Jerusalem, the Institute of Science and Technology Austria and the University of Princeton found a clever way to overcome the challenges by stacking two dipolar layers, as illustrated in the figure: in this way, they were able to demonstrate for the first time the attractive dipole-dipole component of the coupling between the particles, with surprising results.

They show that the presence of dipolar excitons in one of the bilayers induces an accumulation of dipolar excitons in the second bilayer. The latter proves that under appropriate conditions the old proverb also applies to dipolar excitons.

Recently, dipolar quantum gases and liquids attracted a lot of attention, since they host a plethora of exotic many-particle phenomena originating in the long-range and anisotropic character of the dipole-dipole interactions. Dipolar phases of matter have so far been mostly studied in the context of ultracold gases of polar molecules and magnetic atoms: a good example is the recently observed supersolidity - crystals where the atoms flow without friction. Such low-density ensembles, however, make it challenging to achieve the regime of strong interparticle interactions, where most of the exotic physics takes place.

The strong attractive inter-bilayer attractive coupling as demonstrated now by Hubert et al. makes the investigation of these phenomena in a solid-state system of dipolar fluids possible. In particular, it can probe dipolar densities and interaction strengths currently unavailable in atomic realisations, which is expected to reveal new collective effects and phases.

One example is the larger than expected mutual drag and binding energies between dipolar particles detected in the exciton experiments. This surprising effect is attributed to the appearance of electro-acoustic waves or polarons in the two fluids, mediated by the remote dipole-dipole interactions. As the fluid density increases, the polaron energy changes significantly, possibly representing the phase boundary between gas and liquid states.

This striking phenomenon is a good motivation for future experiments attempting the realisation of the exotic many-body phases with anisotropic interactions of strongly correlated quantum systems.

Media Contact

Paulo V. Santos
santos@pdi-berlin.de
49-030-203-77221

http://www.fv-berlin.de 

Paulo V. Santos | EurekAlert!
Further information:
http://www.fv-berlin.de/news/a-dance-of-two-tailoring-interactions-between-remote-fluids-of-excitons-1?set_language=en
http://dx.doi.org/10.1103/PhysRevX.9.021026

More articles from Physics and Astronomy:

nachricht Researchers demonstrate three-dimensional quantum hall effect for the first time
19.08.2019 | Singapore University of Technology and Design

nachricht A laser for penetrating waves
19.08.2019 | Helmholtz-Zentrum Dresden-Rossendorf

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Stanford builds a heat shield just 10 atoms thick to protect electronic devices

19.08.2019 | Information Technology

Researchers demonstrate three-dimensional quantum hall effect for the first time

19.08.2019 | Physics and Astronomy

Catalysts for climate protection

19.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>