Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A cosmic pretzel

07.10.2019

Twin baby stars grow amongst a twisting network of gas and dust

The two baby stars were found in the [BHB2007] 11 system - the youngest member of a small stellar cluster in the Barnard 59 dark nebula, which is part of the clouds of interstellar dust called the Pipe nebula. Previous observations of this binary system showed the outer structure.


The Atacama Large Millimeter/submillimeter Array (ALMA) captured this unprecedented image of two circumstellar disks, in which baby stars are growing, feeding with material from their surrounding birth disk. The complex network of dust structures distributed in spiral shapes remind of the loops of a pretzel. These observations shed new light on the earliest phases of the lives of stars and help astronomers determine the conditions in which binary stars are born.

Credit: ALMA (ESO/NAOJ/NRAO), Alves et al.

Now, thanks to the high resolution of the Atacama Large Millimeter/submillimeter Array (ALMA) and an international team of astronomers led by scientists from the Max Planck Institute for Extraterrestrial Physics (MPE) in Germany, we can see the inner structure of this object.

"We see two compact sources that we interpret as circumstellar disks around the two young stars," explains Felipe Alves from MPE who led the study. A circumstellar disk is the ring of dust and gas that surrounds a young star.

The star accrete matter from the ring to grow bigger. "The size of each of these disks is similar to the asteroid belt in our Solar System and the separation between them is 28 times the distance between the Sun and the Earth," notes Alves.

The two circumstellar disks are surrounded by a bigger disk with a total mass of about 80 Jupiter masses, which displays a complex network of dust structures distributed in spiral shapes - the pretzel loops. "This is a really important result," stresses Paola Caselli, managing director at MPE, head of the Centre of Astrochemical Studies and co-author of the study.

"We have finally imaged the complex structure of young binary stars with their feeding filaments connecting them to the disk in which they were born. This provides important constraints for current models of star formation."

The baby stars accrete mass from the bigger disk in two stages. The first stage is when mass is transferred to the individual circumstellar disks in beautiful twirling loops, which is what the new ALMA image showed. The data analysis also revealed that the less-massive but brighter circumstellar disk -- the one in the lower part of the image -- accretes more material.

In the second stage, the stars accrete mass from their circumstellar disks. "We expect this two-level accretion process to drive the dynamics of the binary system during its mass accretion phase," adds Alves. "While the good agreement of these observations with theory is already very promising, we will need to study more young binary systems in detail to better understand how multiple stars form."

###

More information

This research was presented in a paper published on 3 October 2019 in the journal Science.

The team is composed of F. O. Alves (Center for Astrochemical Studies, Max Planck Institute for Extraterrestrial Physics, Garching, Germany), P. Caselli (Center for Astrochemical Studies, Max Planck Institute for Extraterrestrial Physics, Germany), J. M. Girart (Institut de Ciències de l'Espai, Consejo Superior de Investigaciones Científicas, Spain and Institut d'Estudis Espacials de Catalunya, Spain), D. Segura-Cox (Center for Astrochemical Studies, Max Planck Institute for Extraterrestrial Physics, Garching, Germany), G. A. P. Franco (Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Brazil), A. Schmiedeke (Center for Astrochemical Studies, Max Planck Institute for Extraterrestrial Physics, Garching, Germany) and B. Zhao (Center for Astrochemical Studies, Max Planck Institute for Extraterrestrial Physics, Garching, Germany).

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of ESO, the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI). ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive ground-based astronomical observatory by far. It has 16 Member States: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile and with Australia as a Strategic Partner. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its world-leading Very Large Telescope Interferometer as well as two survey telescopes, VISTA working in the infrared and the visible-light VLT Survey Telescope. Also at Paranal ESO will host and operate the Cherenkov Telescope Array South, the world's largest and most sensitive gamma-ray observatory. ESO is also a major partner in two facilities on Chajnantor, APEX and ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre Extremely Large Telescope, the ELT, which will become "the world's biggest eye on the sky".

Links

* Research paper - https://www.eso.org/public/archives/releases/sciencepapers/eso1916/eso1916a.pdf

* Photos of ALMA - https://www.eso.org/public/images/archive/search/?adv=&subject_name=Atacama%20Large%20Millimeter/submillimeter%20Array

Contacts

Felipe Alves
Center for Astrochemical Studies -- Max Planck Institute for Extraterrestrial Physics
Garching bei München, Germany
Tel: +49 89 30000 3897
Email: falves@mpe.mpg.de

Mariya Lyubenova
ESO Head of Media Relations
Garching bei München, Germany
Tel: +49 89 3200 6188
Email: pio@eso.org

Media Contact

Calum Turner
pio@eso.org
49-893-200-6188

 @ESO

http://www.eso.org 

Calum Turner | EurekAlert!
Further information:
http://www.eso.org/public/news/eso1916/

More articles from Physics and Astronomy:

nachricht Physicists from Ulm put Einstein to the test - Atomic clock on space-time voyage: a quantum-mechanical twin paradox
07.10.2019 | Universität Ulm

nachricht More energy means more effects -- in proton collisions
07.10.2019 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cosmic pretzel

Twin baby stars grow amongst a twisting network of gas and dust

The two baby stars were found in the [BHB2007] 11 system - the youngest member of a small stellar cluster in the Barnard 59 dark nebula, which is part of the...

Im Focus: A fortress of ice and snow

MOSAiC expedition begins its ice drift on a floe at 85 degrees north and 137 degrees east

After only a few days of searching, experts from the MOSAiC expedition have now found a suitable ice floe, where they will set up the research camp for their...

Im Focus: Jellyfish's 'superpowers' gained through cellular mechanism

Jellyfish are animals that possess the unique ability to regenerate body parts. A team of Japanese scientists has now revealed the cellular mechanisms that give jellyfish these remarkable "superpowers."

Their findings were published on August 26, 2019 in PeerJ.

"Currently our knowledge of biology is quite limited because most studies have been performed using so-called model animals like mice, flies, worms and fish...

Im Focus: Many gas giant exoplanets waiting to be discovered

There is an as-yet-unseen population of Jupiter-like planets orbiting nearby Sun-like stars, awaiting discovery by future missions

There is an as-yet-unseen population of Jupiter-like planets orbiting nearby Sun-like stars, awaiting discovery by future missions like NASA's WFIRST space...

Im Focus: Spider silk: A malleable protein provides reinforcement

Scientists from the University of Würzburg have discovered that spider silk contains an exceptional protein. It generates high bonding strength by making use of an amino acid scientists have hitherto paid little attention to. The finding could have important implications in many areas.

Why are the lightweight silk threads of web spiders tougher than most other materials? Scientists from the Universities of Würzburg and Mainz teamed up to find...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

The fast dance of electron spins

07.10.2019 | Life Sciences

More energy means more effects -- in proton collisions

07.10.2019 | Physics and Astronomy

Weak spot in pathogenic bacteria

07.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>