Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Cosmic Crash of Unexpected Proportions

02.09.2011
An international research team investigates the distant galaxy cluster Abell 2744

The biggest known cosmic collision in the Universe took place in a distant galaxy cluster called Abell 2744. That is the conclusion of an international team of scientists investigating the debris of this massive crash with novel research methods that were developed at Heidelberg University’s Institute of Theoretical Astrophysics.


The image shows the galaxy cluster Abell 2744. It combines observations in the visible light spectrum with X-ray images of satellite Chandra (red) and clouds of dark matter (blue). The particularities of the system are clearly visible, for example a clump of dark matter with no stars or gas (northwest sector) and a clump of galaxies and dark matter without gas (western sector). The scale indicates a distance of 250,000 parsecs, approximately nine times the diameter of the visible part of our own galaxy, the Milky Way. In astronomy, the compass points East and West are switched, as shown at the bottom right corner of the image.
Image source: NASA, ESA, ESO, CXC, J. Merten (Heidelberg/Bologna) & D. Coe (STScl)

These methods enabled the scientists to reconstruct the course of events over a period of several hundreds of millions of years and thus to understand how large-scale structures develop in the Universe based on the interaction of different kinds of matter. Researchers from Brazil, Canada, Germany, Israel, Italy, Scotland, Spain, Taiwan and the United States of America collaborated on the investigation.

The astrophysicists observed the galaxy cluster Abell 2744 from an unprecedented number of angles with high-performance telescopes, among them the Very Large Telescope of the European Southern Observatory (ESO) in Chile, the Japanese Subaru Telescope in Hawaii and the Hubble and Chandra space telescopes. With the data gleaned from these observations, the research team headed by astrophysicist Dr. Julian Merten of the Heidelberg Institute of Theoretical Astrophysics was able to investigate the three essential components of galaxy clusters: galaxies and their stars, intergalactic gas and dark matter.

Each of the approx. 1,000 galaxies of Abell 2744 contains many billions of stars. However, this “visible” matter only makes up about five percent of the entire mass of the galaxy cluster. The galaxies “float” in the diffuse gas that is distributed between them, Dr. Merten explains. This “intergalactic gas” comprises 20 percent of the overall mass and was heated up so intensely by the effects of gravitational forces in the galaxy cluster that it emits radiation mostly in the X-ray wavelength band. The remaining 75 percent of the galaxy cluster consist of the mysterious “dark matter”.

To understand the processes going on in Abell 2744, the scientists aimed to determine the distribution of these three components as precisely as possible. This is easily accomplished for galaxies and intergalactic gas, but dark matter is much harder to pin down. It neither emits nor absorbs light and can only be detected through its gravitational attraction. However, during his time as PhD student at the Heidelberg Graduate School of Fundamental Physics, Julian Merten devised special methods for measuring the distribution of dark matter with the aid of an effect known as gravitational lensing.

When light rays emitted by galaxies far beyond Abell 2744 cut through the massive galaxy cluster, the gravitational attraction of the unevenly distributed dark matter changes the trajectory of the light travelling through the cluster. “The rays of light are ‘bent’ more or less strongly so that the images of the background galaxies appear distorted in a characteristic way,” says Dr. Merten. “By analysing this distortion for a large number of background galaxies we are able to chart out a map showing the distribution of dark matter.”

The surprising outcome of the analysis of Abell 2744 is that this system consists of at least four different galaxy clusters that must have collided over a period of about 350 million years. “The collision obviously separated the hot gas from the dark matter and led to an unusual and fascinating distribution of the three kinds of matter,” adds Dr. Merten. In the northwest sector, the scientists found an area where dark matter was separated from the other components in an unusual way. The hot gas leads the dark matter by a large distance and the galaxies do not appear to match the position of the dark matter, either. In the western sector, the researchers came across an area that contains both dark matter and galaxies, but no hot gas. “It looks as if this gas was stripped away completely in the central region of the cluster during the collision, and was left behind,” says Dr. Merten. Because of the large number of unusual and often mysterious phenomena, the researchers have dubbed Abell 2744 “Pandora’s cluster”.

A publication on these research findings entitled “Creation of Cosmic Structure in the Complex Galaxy Cluster Merger Abell 2744” will be appearing in ”Monthly Notices of the Royal Astronomical Society”. Preprint: http://arxiv.org/abs/1103.2272.

The Institute of Theoretical Astrophysics is part of Heidelberg University's Centre for Astronomy (ZAH).

Contact:
Dr. Julian Merten
Zentrum für Astronomie der Universität Heidelberg (ZAH)
Institute of Theoretical Astrophysics
phone: +49 6221 54 8987
jmerten@uni-heidelberg.de
Communications and Marketing
Press Office, phone +49 6221 54 2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>