Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A better way to weigh millions of solitary stars

15.12.2017

Astronomers have come up with a new and improved method for measuring the masses of millions of solitary stars, especially those with planetary systems.

Getting accurate measurements of how much stars weigh not only plays a crucial role in understanding how stars are born, evolve and die, but it is also essential in assessing the true nature of the thousands of exoplanets now known to orbit most other stars.


Vanderbilt astronomers have discovered a better way to weigh solitary stars and planets.

Credit: Michael Smelzer, Vanderbilt University

The method is tailor-made for the European Space Agency's Gaia Mission, which is in the process of mapping the Milky Way galaxy in three dimensions, and NASA's upcoming Transiting Exoplanet Survey Satellite (TESS), which is scheduled for launch next year and will survey the 200,000 brightest stars in the firmament looking for alien earths.

"We have developed a novel method for 'weighing' solitary stars," said Stevenson Professor of Physics and Astronomy Keivan Stassun, who directed the development. "First, we use the total light from the star and its parallax to infer its diameter. Next, we analyze the way in which the light from the star flickers, which provides us with a measure of its surface gravity. Then we combine the two to get the star's total mass."

Stassun and his colleagues--Enrico Corsaro from INAF-Osservatorio Astrofisico di Catania in Italy, Joshua Pepper from Leigh University and Scott Gaudi from Ohio State University--describe the method and demonstrate its accuracy using 675 stars of known mass in an article titled "Empirical, accurate masses and radii of single stars with TESS and GAIA" accepted for publication in the Astronomical Journal.

Traditionally, the most accurate method for determining the mass of distant stars is to measure the orbits of double star systems, called binaries. Newton's laws of motion allow astronomers to calculate the masses of both stars by measuring their orbits with considerable accuracy.

However, fewer than half of the star systems in the galaxy are binaries, and binaries make up only about one-fifth of red dwarf stars that have become prized hunting grounds for exoplanets, so astronomers have come up with a variety of other methods for estimating the masses of solitary stars.

The photometric method that classifies stars by color and brightness is the most general, but it isn't very accurate. Asteroseismology, which measures light fluctuations caused by sound pulses that travel through a star's interior, is highly accurate but only works on several thousand of the closest, brightest stars.

"Our method can measure the mass of a large number of stars with an accuracy of 10 to 25 percent. In most cases, this is far more accurate than is possible with other available methods, and importantly it can be applied to solitary stars so we aren't limited to binaries," Stassun said.

The technique is an extension of an approach that Stassun developed four years ago with graduate student Fabienne Bastien, who is now an assistant professor at Pennsylvania State University. Using special data visualization software developed by a neuro-diverse team of Vanderbilt astronomers, Bastein discovered a subtle flicker pattern in starlight that contains valuable information about a star's surface gravity.

Last year, Stassun and his collaborators developed an empirical method for determining the diameter of stars using published star catalog data. It involves combining information on a star's luminosity and temperature with Gaia Mission parallax data. (The parallax effect is the apparent displacement of an object caused by a change in the observer's point of view.)

"By putting together these two techniques, we have shown that we can estimate the mass of stars catalogued by NASA's Kepler mission with an accuracy of about 25 percent and we estimate that it will provide an accuracy of about 10 percent for the types of stars that the TESS mission will be targeting," said Stassun.

Establishing the mass of a star that possesses a planetary system is a critical factor in determining the mass and size of the planets circling it. An error of 100 percent in the estimate of the mass of a star, which is typical using the photometric method, can result in an error of as much as 67 percent in calculating the mass of its planets. This is roughly equivalent to the difference between a Mercury and an Earth. So, it is extremely important in properly assessing the nature of all the alien worlds that astronomers have begun detecting in recent years.

###

The research was funded by National Science Foundation PAARE grant AST-1358862 and the European Union's Horizon 2020 research and innovation program.

David Salisbury | Vanderbilt University

Further reports about: Vanderbilt alien diameter exoplanets gravity orbits solitary stars star systems

More articles from Physics and Astronomy:

nachricht Rapid water formation in diffuse interstellar clouds
25.06.2018 | Max-Planck-Institut für Kernphysik

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany

25.06.2018 | Ecology, The Environment and Conservation

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>