Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A baby crystal is born

18.01.2012
Lead sulfide (PbS) forms when an equal number of lead and sulfur atoms exchange electrons and bond together in cubic crystals.

Now scientists have determined that a structure comprising 32 lead-sulfur pairs is the smallest possible cubic arrangement that exhibits the same coordination as bulk lead sulfide. (The coordination number is the number of nearest neighbors each atom in the crystal has.)

Researchers from McNeese State University in Louisiana, John Hopkins University in Maryland, and the University of Konstanz in Germany identified the "baby crystal" by running computer simulations that calculated the energy and geometry of different structures containing different numbers of atoms. They found that (PbS)32 is the smallest stable unit that possesses both the same cubic structure and coordination number as the bulk crystal. The researchers also experimentally tested their theoretical findings by gently depositing (PbS)32 clusters on a graphite surface where they could easily migrate and merge together to form larger nanoscale structures.

By using scanning tunneling microscope images to measure the dimensions of the resultant lead sulfide nano-blocks, the researchers confirmed that the (PbS)32 "baby crystals" had indeed stacked together as theoretically predicted.

The results, published in the AIP's Journal of Chemical Physics, show how small lead sulfide crystals come together to form larger units and could help provide a better understanding of the mechanisms involved in the formation of solids.

Article: "(PbS)32: A Baby Crystal" is published in the Journal of Chemical Physics.

Authors: B. Kiran (1), Anil K. Kandalam (2), Rameshu Rallabandi, (1) Pratik Koirala (2), Xiang Li (4), Xin Tang (4), Yi Wang (4), Howard Fairbrother (4), Gerd Gantefoer (3), and Kit Bowen (4).

(1) Department of Chemistry, McNeese State University, La.
(2) Department of Physics, McNeese State University, La.
(3) Department of Physics, University of Konstanz, Germany
(4) Depts. Of Chemistry and Material Sciences, John Hopkins University, Md.

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering
13.11.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>