A novel approach to create high-density magnetic data storage

Usually, about 100 to 600 grains form one bit, i.e. the nowadays smallest storage unit. Each grain is about 10 nanometers in size. These grains are arranged next to each other on glass substrates that are plated with cobalt, chrome, and platinum.

Both the size and amount of the grains necessary for one bit could not be decreased further without decreasing the signal/noise ratio. Weaker signals could even be accompanied by loss of information. Therefore, new concepts of magnetic storage have to be found.

Physicists from the research centre Forschungszentrum Dresden-Rossendorf / FZD (Germany), the Universidad Autonoma de Barcelona (Spain) and further research institutions were able to generate magnetic areas which promise to overcome the obstacles of today’s data storage technology. Using a highly focused ion beam, i.e. fast charged atoms, they irradiated an iron-aluminum alloy in such a way that only the treated zones became ferromagnetic. As the ion beam is focused to a size of only a few nanometers and the ion dose is rather low, the created nanozones are extremely flat and significantly less than 100 nanometers in diameter.

The read/write heads of personal computer disks fly above the hard disks at a distance of 20 nanometers. Conventional technologies for structuring material surfaces on the nanoscale result in corrugated surfaces. These technologies are not suitable for hard disks because the generated bumpy nanostructures would interfere with the read/write heads and might finally destroy the disk.

The new superflat nanomagnets, however, fulfill all requirements concerning a new concept for magnetic data storage. In the future, each of these nanomagnets could serve as one bit, provided that they could be produced in parallel on large areas via lithographic techniques, and shrunk in size down to about 30 nanometers. “We are now working on the magnetic stability of our nanomagnets. Its increase would be a further step with respect to future industrial exploitation”, says Dr. Jürgen Fassbender, scientist at FZD.

Further information:
Dr. Jürgen Fassbender
Institute of Ion-Beam Physics and Materials Research
Forschungszentrum Dresden-Rossendorf (FZD)
Phone: ++49 351 260 – 3096
Email: j.fassbender@fzd.de
Contact to the media:
Dr. Christine Bohnet
Public Relations
Forschungszentrum Dresden-Rossendorf (FZD)
Bautzner Landstr. 400, 01328 Dresden, Germany
Tel.: ++49 351 260 – 2450 or ++49 160 969 288 56
Fax: ++49 351 260 – 2700
Email : presse@fzd.de

Media Contact

Christine Bohnet alfa

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors