Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

26AlF – the first detection of a radioactive molecule in space

31.07.2018

The first unambiguous observation of a radioactive molecule, 26AlF, was made in the ancient nova-like object CK Vul (or Nova Vul 1670), which - most likely - is a stellar-merger remnant. The eruption of the object was observed between 1670-1672 in Europe. The interest in this object has been recently rejuvenated by the discovery of molecular gas of a very peculiar isotopic composition in the remnant.
The finding was announced by an international research team led by Tomasz Kamiński (CfA), including Karl Menten (MPIfR Bonn).

The variable star CK Vulpeculae (CK Vul) is known as the location of a stellar outbreak, a nova, which was observed by European astronomers in the 17th century in the direction of the constellation “Vulpecula” (the little fox). Nova Vul 1670 was easily visible with the naked eye and varied in brightness significantly over the course of two years.


Components of the nebula around the star CK Vul: diazenylium (N2H+) in blue, methanol (CH3OH) in red and AlF in cyan/green/yellow. The radioactive 26AlF was observed only in the very inner region.

T. Kamiński


Color reproduction of the nebula surrounding the star CK Vul (cf. Fig. 1), overlayed onto a night image of the ALMA antennas at 5100 m altitude on Chajnantor, Chile.

T. Kamiński (composition); ESO/Y. Beletsky (ALMA photo).

It took a long time, until 2013, before astronomers, first using the Atacama Pathfinder Experiment telescope (APEX), could trace molecular gas of a very peculiar isotopic composition in the stellar remnant. Analysis of these very surprising findings indicated that a rare and spectacular stellar merger of two stars took place. The collision created a so-called red transient source or a red nova, a newly recognized class of eruptive stars.

The observation of the 26Al isotope provides direct insight into the merger process in CK Vul showing that even the deep and dense inner layers of the star can eventually be exposed in a stellar collision. More specifically, the observations constrain the nature of the binary system that merged more than 300 years ago: a low-mass binary that contained a red-giant-branch star of a mass of 0.8-2.5 solar masses.

This first direct observation of 26Al in a stellar-like object is also important in the broader context of the Galactic chemical evolution – this is the first time an active producer of the radioactive nuclide 26Al has been directly observationally identified. It has been known for decades that about two solar masses of 26Al is spread across the Galaxy.

Although observable in gamma-ray emission, this radioactive cloud has unclear origin. With current estimates on the mass of 26Al in CK Vul and the Galactic merger rate, it seems rather unlikely that mergers are solely responsible for this Galactic radioactive material. However, the actual mass of 26Al in atomic form in CK Vul and other merger remnants may be much higher and the current merger rates can be very much underestimated, so this is not a closed issue and the role of mergers may be non-negligible.

In addition to putting into spotlight a new type of objects not considered before in the context of Galactic 26Al production, the discovery illustrates that modern millimeter-wave interferometers such as ALMA may be used to search for active 26Al producers at much better angular resolutions than gamma-ray observatories.

Another interesting aspect of the work is that the line positions were first calculated by molecular spectroscopists, who are co-authors of the study. Characterizing material containing 26Al in through direct measurements in a laboratory would be very challenging and expensive so calculations were the only practical option. The observed transitions match perfectly the predicted ones.

CK Vul remains an enigmatic source in the sky providing a playground for new astronomical detections.


The discovery involved the following telescopes/facilities: APEX, IRAM 30m, NOEMA, ALMA, and SMA. The most relevant observations were done with the transforming PdbI/NOEMA interferometer and with the ALMA array, including its newly commissioned band 5 receiver.

The research team comprises Tomasz Kamiński, Romuald Tylenda, Karl M. Menten, Amanda Karakas, Jan Martin Winters, Alexander A. Breier, Ka Tat Wong, Thomas F. Giesen, and Nimesh A. Patel.

Karl M. Menten, director at MPIfR and head of its Millimeter and Submillimeter Astronomy division, is co-author of the paper.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Karl M. Menten
Director and Head of Research Department “Millimeter and Submillimeter Astronomy”
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-297
E-mail: kmenten@mpifr-bonn.mpg.de

Dr. Tomasz Kaminski
Harvard-Smithsonian Centre for Astrophysics (CfA)
Fon: +1 617-495-7259
E-mail: tomasz.kaminski@cfa.harvard.edu

Originalpublikation:

Tomasz Kamiński et al.: Astronomical detection of a radioactive molecule 26AlF in a remnant of an ancient explosion, Advanced Online Publication (AOP), Nature Astronomy, July 30, 2018 (dx.doi.org/10.1038/s41550-018-0541-x).

Weitere Informationen:

https://www.mpifr-bonn.mpg.de/pressreleases/2018/10

Norbert Junkes | Max-Planck-Institut für Radioastronomie

More articles from Physics and Astronomy:

nachricht From China to the South Pole: Joining forces to solve the neutrino mass puzzle
25.02.2020 | Johannes Gutenberg-Universität Mainz

nachricht Beyond the brim, Sombrero Galaxy's halo suggests turbulent past
21.02.2020 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Turbomachine expander offers efficient, safe strategy for heating, cooling

25.02.2020 | Power and Electrical Engineering

The seismicity of Mars

25.02.2020 | Earth Sciences

Cancer cachexia: Extracellular ligand helps to prevent muscle loss

25.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>