Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2 Solar System puzzles solved

26.07.2012
Comets and asteroids preserve the building blocks of our Solar System and should help explain its origin. But there are unsolved puzzles.

For example, how did icy comets obtain particles that formed at high temperatures, and how did these refractory particles acquire rims with different compositions? Carnegie's theoretical astrophysicist Alan Boss and cosmochemist Conel Alexander* are the first to model the trajectories of such particles in the unstable disk of gas and dust that formed the Solar System.

They found that these refractory particles could have been processed in the hot inner disk, and then traveled out to the frigid outer regions to end up in icy comets. Their meandering trips back and forth could help explain the different compositions of their rims. The research is published in Earth and Planetary Science Letters.

The young Sun is thought to have experienced a series of outbursts caused by the rapid infall of disk gas onto the Sun. The leading mechanism for explaining such outbursts is a phase of disk instability. The researchers modeled the trajectories of several hundred centimeter-sized melilite mineral particles during a phase of disk instability. These particles are similar to calcium-aluminum-rich inclusions (or CAIs), the refractory particles often found in well-preserved meteorites, as well as the comet Wild 2.

Their disk model assumed a marginally gravitationally unstable, fully three-dimensional disk, with a mass of about 5 % of today's Sun and temperatures ranging from a frigid -350 °F (60K) in the outer regions, to a scorching 2240 °F (1500K) near the center. Their calculations allowed the CAIs to orbit in the disk while being subjected to gas drag and the gravity of both the disk and the Sun.

The particles started orbiting in unison, but after about 20 years their trajectories started to diverge significantly. Most struck the inner boundary of the disk at 1 AU (the Earth/Sun distance), while others went to the outer boundary at 10 AU, where they could be swept up by a growing comet. About 10% migrated back and forth in the disk before hitting one or the other boundary.

The researchers then modeled the evaporation and condensation processes that the particles would experience during their migrations and found that such particles were likely to acquire outer rims with varied isotopic compositions recently shown to characterize CAIs.

"CAIs are thought to have formed at the very beginning of the Solar System. Our results show that they must have experienced remarkably complex histories as they were transported chaotically all over the disk," remarked Alexander.

These migrations could explain the different oxygen isotopes that have been found in particles from meteorites. These are varieties of oxygen atoms with different numbers of neutrons, which point to different processing conditions for the particle rims.

Previous work by Boss had shown that oxygen isotope abundances could vary in an unstable disk by the range found in meteorites. Coupled with the new results, these models show that several puzzles may have been solved—an unstable disk can explain both large-scale outward transport of refractory particles, as well as the peculiar rim compositions acquired during their journeys.

"It's nice to solve two problems at once," said Boss. "But there are still many more puzzles about meteorites for us to work on."

* The research also included colleague Morris Podolak at Tel Aviv University and was funded in part by NASA Origins of Solar Systems Program. The calculations were performed on the Carnegie Alpha Cluster supported in part by the NSF.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Alan Boss | EurekAlert!
Further information:
http://www.ciw.edu
http://www.carnegiescience.edu

More articles from Physics and Astronomy:

nachricht CCNY-Yale researchers make shape shifting cell breakthrough
12.12.2018 | City College of New York

nachricht Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor
11.12.2018 | Science China Press

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>