Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2 Solar System puzzles solved

26.07.2012
Comets and asteroids preserve the building blocks of our Solar System and should help explain its origin. But there are unsolved puzzles.

For example, how did icy comets obtain particles that formed at high temperatures, and how did these refractory particles acquire rims with different compositions? Carnegie's theoretical astrophysicist Alan Boss and cosmochemist Conel Alexander* are the first to model the trajectories of such particles in the unstable disk of gas and dust that formed the Solar System.

They found that these refractory particles could have been processed in the hot inner disk, and then traveled out to the frigid outer regions to end up in icy comets. Their meandering trips back and forth could help explain the different compositions of their rims. The research is published in Earth and Planetary Science Letters.

The young Sun is thought to have experienced a series of outbursts caused by the rapid infall of disk gas onto the Sun. The leading mechanism for explaining such outbursts is a phase of disk instability. The researchers modeled the trajectories of several hundred centimeter-sized melilite mineral particles during a phase of disk instability. These particles are similar to calcium-aluminum-rich inclusions (or CAIs), the refractory particles often found in well-preserved meteorites, as well as the comet Wild 2.

Their disk model assumed a marginally gravitationally unstable, fully three-dimensional disk, with a mass of about 5 % of today's Sun and temperatures ranging from a frigid -350 °F (60K) in the outer regions, to a scorching 2240 °F (1500K) near the center. Their calculations allowed the CAIs to orbit in the disk while being subjected to gas drag and the gravity of both the disk and the Sun.

The particles started orbiting in unison, but after about 20 years their trajectories started to diverge significantly. Most struck the inner boundary of the disk at 1 AU (the Earth/Sun distance), while others went to the outer boundary at 10 AU, where they could be swept up by a growing comet. About 10% migrated back and forth in the disk before hitting one or the other boundary.

The researchers then modeled the evaporation and condensation processes that the particles would experience during their migrations and found that such particles were likely to acquire outer rims with varied isotopic compositions recently shown to characterize CAIs.

"CAIs are thought to have formed at the very beginning of the Solar System. Our results show that they must have experienced remarkably complex histories as they were transported chaotically all over the disk," remarked Alexander.

These migrations could explain the different oxygen isotopes that have been found in particles from meteorites. These are varieties of oxygen atoms with different numbers of neutrons, which point to different processing conditions for the particle rims.

Previous work by Boss had shown that oxygen isotope abundances could vary in an unstable disk by the range found in meteorites. Coupled with the new results, these models show that several puzzles may have been solved—an unstable disk can explain both large-scale outward transport of refractory particles, as well as the peculiar rim compositions acquired during their journeys.

"It's nice to solve two problems at once," said Boss. "But there are still many more puzzles about meteorites for us to work on."

* The research also included colleague Morris Podolak at Tel Aviv University and was funded in part by NASA Origins of Solar Systems Program. The calculations were performed on the Carnegie Alpha Cluster supported in part by the NSF.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Alan Boss | EurekAlert!
Further information:
http://www.ciw.edu
http://www.carnegiescience.edu

More articles from Physics and Astronomy:

nachricht Astronomers see 'warm' glow of Uranus's rings
21.06.2019 | University of California - Berkeley

nachricht A new force for optical tweezers awakens
19.06.2019 | University of Gothenburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>