Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2 crystals linked by quantum physics

05.03.2012
Researchers at the UNIGE have succeeded in entangling 2 macroscopic crystals, a step towards the development of quantum memory
For almost fifteen years Professor Nicolas Gisin and his physicist collaborators have been entangling photons. If this exercise seems to them perhaps henceforth trivial, it continues to elude us ordinary humans. The laws that govern the quantum world are so strange that they completely escape us human beings confronted with the laws of the macroscopic world. This apparent difference in nature between the infinitesimally small and our world poses the question of what link exists between the two.

However these two worlds do interact. To realise this, one must follow the latest experiment of the Group of Applied Physics (GAP). Nicolas Gisin, researcher Mikael Afzelius and their team have actually produced the entanglement of two macroscopic crystals, visible to the naked eye, thanks to a quantum particle, a photon, otherwise known as a particle of light.

To achieve this exploit, the physicists developed a complex device to which they hold the key. After a first system that allows them to verify that they've actually managed to release one, and only one, photon, a condition essential to the success of the experiment, a second device "slices" this particle in two. This splitting allows the researchers to obtain two entangled photon halves. In other words, even though they are not in the same location, the two halves continue to behave as if they were one.

Wait for the photons to exit

The two halves are then each sent through a separate crystal where they will interact with the neodymium atoms present in its atomic structure. At that moment, because they are excited by these entangled photons, the neodymium lattices in each crystal likewise become entangled. But how can we be certain that they've actually reacted to the two photon halves?

That's simple ... or nearly! They just have to wait for the two particles to exit the crystals - since they exit after a rather brief period of about 33 nanoseconds - and to verify that it really is the entangled pair. "That's exactly what we found since the two photons that we captured exiting the crystals showed all the properties of two quantum particles behaving as one, characterised by their simultaneity in spite of their separation", Feìlix BussieÌres rejoices, one of the authors of the article.

In addition to its fundamental aspect, this experiment carries with it potential applications. Actually, for the specialists in quantum entanglement, this phenomenon has the unpleasant habit of fading when the two entangled quantum objects are too far from one another. This is problematic when one envisions impregnable quantum cryptography networks which could link two distant speakers separated by several hundreds or even thousands of kilometres.

"Thanks to the entanglement of crystals, we can now imagine inventing quantum repeaters", Nicolas Gisin explains, "in other words, the sorts of terminals that would allow us to relay entanglement over large distances. We could then also create memory for quantum computers."

Entanglement still has many surprises in store for us.

Nicolas Gisin | EurekAlert!
Further information:
http://www.unige.ch

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>