Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

1,2,3, Many - How Few Particles Turn into a ‘Heap’

25.10.2013
Heidelberg physicists observe the formation of a many-body system in experiment

How large does a group of particles have to be to render moot its exact number of particles?

In experiments using ultracold atoms, Heidelberg physicists succeeded in observing the transition to a many-body system well described by an infinite number of particles. In philosophy, this problem is known as the sorites paradox. The essential question is when a collection of elements forms a "heap".

The experiments were conducted by researchers of Heidelberg University under the direction of Prof. Dr. Selim Jochim at the Max Planck Institute for Nuclear Physics. The results of the research were published in "Science".

"Systems comprising many particles are generally extremely difficult to describe in a microscopically exact way. Hence researchers tend to work with effective theories that look not at the individual particles, such as gas molecules in the air, but at macroscopic values such as pressure or temperature," explains Jochim. The Heidelberg researchers prepared the systems so small they could still be described microscopically. Starting with a single atom, the scientists increased the number of particles one by one.

The energy of the entire system was measured with each added particle. The experiments ultimately showed that for the system under study very few atoms were needed to apply the theory derived for an infinitely large system. "We can identify this as the direct transition from a few-body system into a many-body system. Simply put, in our system it takes only about four atoms to form a 'heap' in the sense of the sorites paradox," continues the Heidelberg physicist.

Two years ago Jochim's team was able to reproducibly control the system used for the current experiments in all of its properties, including the exact number of particles, their state of motion and their interaction. "To date we are the only research team in the world able to prepare such systems," Prof. Jochim points out. "For the first time, these results realise our vision to gain a much deeper insight into the nature of fundamental few-body systems by these experiments.

Original publication:
A. N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, S. Jochim: From Few to Many: Observing the Formation of a Fermi Sea One Atom at a Time. Science, Vol. 342 no. 6157 pp. 457-460, 25 October 2013, doi: 10.1126/science.1240516
Note to Newsrooms:
An infographic is available from the Press Office.
Contact:
Prof. Dr. Selim Jochim
Institute for Physics
Phone: (06221) 54-19472
jochim@uni-heidelberg.de
Communications and Marketing
Press Office
Phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>