Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thanks for the 'Quantum' Memories: Research May Lead to Faster, More Secure Computers

30.03.2010
Virginia Lorenz, who recently joined the University of Delaware faculty as an assistant professor of physics and astronomy, is working on one of the hottest areas in physics -- quantum memories. These devices store information in a flash of light and may serve as the basis of future communications networks.

Lorenz recently co-authored the Nature Photonics article, “Towards High-Speed Optical Quantum Memories,” with colleagues at the University of Oxford, where she did her postdoctoral research with Prof. Ian Walmsley. She tells the University of Delaware's UDaily news service about this fascinating field.

Q. What exactly are quantum memories?

A. Like our own human memory, a quantum memory is a device in which we can store and retrieve information. A quantum memory stores bits of information like a computer. However, unlike everyday computer memory, which uses 1's and 0's to represent information, in a quantum memory the bits can be 1 and 0 at the same time. This is what makes a quantum memory quantum. Quantum refers to the fundamental nature of particles such as atoms and photons. Although in everyday life, things like a light switch are either on or off, when you zoom in to the level of atoms, particles can be in more than one state at a time. A quantum memory is a device that can store the properties of a quantum particle without causing it to be in one state or another.

Q. What advantages would quantum memories provide to computing?

A. The information stored by a quantum memory is called a quantum bit, or qubit. Qubits can be used to perform some mathematical algorithms much faster than current computers, such as factoring the very large numbers used as security keys in secure communication networks. Hence, there is current interest in building quantum computers that use qubits rather than the 1's and 0's of today's computers. Quantum states can also be used to transmit information in a way that prohibits undetected eavesdropping. Quantum memories are important in achieving such secure communication in a somewhat similar way as cell phone repeater stations are important in transmitting signals across long distances.

Q. What did you and your colleagues at Oxford achieve?

A. My colleagues and I built a prototype quantum memory. The information was encoded in an extremely fast flash, or pulse, of laser light, only 300 trillionths of a second long, and the storage medium was a large number of atoms in the gas phase. Although with respect to the fastest laser pulses available ours was relatively slow, it was the fastest pulse to be stored and retrieved in a memory to date, potentially increasing the current data rate more than 100-fold.

Q. What is the next step in the research?

A. For the quantum memory project, which continues on at the University of Oxford, the next step is to store and retrieve a quantum particle of light, called a photon, which would demonstrate that the memory is capable of storing quantum information useful for quantum computation and communication.

In my research group here at UD, we are using quantum states of light to improve our ability to probe the states of atoms and molecules. It turns out that quantum states of light can provide information about matter that regular, or classical, light cannot. In particular, quantum states of light can enhance signals from light-matter interactions that would otherwise be hidden if using classical light. Our work could have implications for experiments that suffer due to unwanted signals and, albeit distant, provide insight into the efficient conversion of energy.

Tracey Bryant | Newswise Science News
Further information:
http://www.udel.edu

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>