Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zinc transporter key to fighting pancreatic cancer and more

07.09.2017

When trace elements rise to toxic levels, bad things happen.

Patients suffering from Alzheimer's and Parkinson's disease harbor significantly higher levels of zinc and iron in their brains than healthy patients.


Jian Hu and a team of MSU scientists have revealed a key structure of a molecular machine, a ZIP zinc transporter.

Courtesy of MSU

Those with pancreatic cancer have an unusually high amount of a specific zinc transporter. So, controlling those levels could be an effective plan of attack against these diseases and others, said Jian Hu, Michigan State University biochemist.

Hu and a team of MSU scientists have revealed a key structure of a molecular machine, a ZIP zinc transporter. Mapping the core of a bacterial ZIP - another celebrated first by Hu's lab - exposes its framework and mechanisms that are common in the ZIP family consisting, which comprises thousands of metal transporters.

The human genome encodes a total of fourteen ZIPs, and many of them are associated with diseases. The discovery, published in the current issue of Science Advances, gives pharmaceutical companies targets to test new drugs.

"ZIP4 is aberrantly overexpressed in pancreatic cancer cells, but it's not present in normal pancreatic tissue," Hu said. "This, and knowing that ZIP4 mutations also lead to a lethal genetic disorder, makes ZIP4 a prime drug target that could possibly help patients suffering from many diseases."

The genetic disorder, Acrodermatitis Enteropathica, is a rare but lethal condition caused by severe zinc deficiency. An earlier discovery by Hu's lab revealed the exterior of ZIP4's structure, or its extracellular domain, which functions as an accessory that makes the machinery more efficient.

"But without knowing the structural information of the core, we don't exactly know how the accessory works," Hu said. "We now see that the transmembrane domain is the core of the machine conducting zinc transport."

The team's structure reveals an unprecedented fold for membrane transporters, implying a unique transport mechanism.

"This distinguishes the ZIP family from any other known transporter family," Hu said.

Solving the crystal structure also led to a surprise finding. Examining the molecular architecture revealed two metal ions trapped halfway through the membrane, forming a binuclear metal center.

"It is quite unusual because it resembles the catalytic centers of some metalloenzymes, but apparently the ZIPs are not enzymes," Hu said. "Clarifying the function of the binuclear metal center is one of our primary goals in future studies."

Hu has dedicated much of his career studying zinc and other trace elements, as they are essential for life. Zinc is the second most-common trace element behind iron. By deciphering how the body maintains proper levels and exploring the effects when those elements go awry, he's hoping to unlock the mechanisms of human ZIP's secrets in their many critical roles.

"In the long run, we hope our study will contribute to the discovery of the ZIP inhibitors for pancreatic cancer and other devastating diseases," Hu said.

###

Additional MSU scientists who were part of this discovery include Tuo Zhang, Jian Liu, Matthias Fellner, Chi Zhang and Dexin Sui.

This research was funded in part by the National Institutes of Health.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Layne Cameron | EurekAlert!

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>