Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why nerve cells die in ALS and frontotemporal dementia

06.02.2018

USC researchers discover a cellular mechanism responsible for at least 10 percent each of ALS and frontotemporal dementia cases

Scientists have for the first time discovered a mechanism that limits the number of "cellular janitors" in the nervous system, leading to increased risk for two neurodegenerative diseases: amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, according to a Keck School of Medicine of USC study published today in Nature Medicine.


Motor nerve cells are used to test thousands of drugs.

Credit: Keck School of Medicine of USC/Ichida Lab

In the study, Yingxiao "TK" Shi and Shaoyu Sebastian Lin in the Justin Ichida Laboratory at USC Stem Cell describe how a mutation in a gene called C9ORF72 leads to toxicity in nerve cells. It causes 10 percent of all cases of ALS and an additional 10 percent of frontotemporal dementia.

"We figured out how the most common form of ALS causes nerve cell death, and nerve cell death is what causes patients to become paralyzed or lose control of neuromuscular functions," said Ichida, an assistant professor of stem cell and regenerative medicine at the Keck School of Medicine and a New York Stem Cell Foundation-Robertson Investigator.

Damage begins as a cellular chain reaction. Normally, the C9ORF72 gene, or C9, produces a protein that is required to make lysosomes, which act as cellular janitors to capture and remove toxic proteins and garbage. Without a normal amount of lysosomes, motor nerve cells accumulate toxic garbage and die.

To understand how this happens, the researchers extracted blood from ALS patients carrying the C9 mutation and reprogrammed these blood cells into motor nerve cells that degenerate and die in the disease. They also extracted blood from healthy patients, reprogrammed these blood cells into motor nerve cells and used gene editing to delete the C9 gene.

Whether patient-derived or gene-edited, all motor nerve cells with the mutation had reduced amounts of the protein normally made by the C9 gene. And by adding the supplemental C9 protein, the researchers could stop the motor nerve cells from degenerating.

"The C9 protein is required to construct the janitors of the cells, which are the lysosomes, and without them you have buildup of proteins in the cell that become a kind of toxic agent that causes the cells to die," Ichida said.

Specifically, insufficient lysosomes cause cells to accumulate two key types of garbage: a big, toxic protein produced by the mutated C9 gene and molecules that receive signals from a neurotransmitter known as glutamate. Too much glutamate hyperstimulates motor nerve cells to death, a phenomenon known as "excitotoxicity."

Guided by these discoveries, the Ichida Lab is now using the patient-derived motor nerve cells to test thousands of potential drugs, with focus on those that affect lysosomes. The goal is to find potential drugs that slow or stop degeneration of these motor nerve cells in petri dishes - and eventually in patients.

According to the National Institutes of Health, ALS is a group of rare neurological diseases that mainly involve the nerve cells (neurons) responsible for controlling voluntary muscle movement, such as chewing, walking and talking. ALS, sometimes called, Lou Gehrig's disease, is progressive and incurable at this time. It is part of a wider group of disorders known as motor neuron diseases. The U.S. Centers for Disease Control and Prevention estimates between 14,000 to 15,000 Americans have ALS.

###

Co-authors include Kim A. Staats, Yichen Li, Wen-Hsuan Chang, Shu-Ting Hung, Eric Hendricks, Gabriel Linares, Yaoming Wang, Brent Wilkinson, Louise Menendez, Toru Sugawara, Phillip Woolwine, Mickey Huang, Michael J. Cowan, Brandon Ge, Nicole Koutsodendris, K. Perry Sandor, Jacob Komberg, Valerie Hennes, Marcelo Coba and Berislav Z. Zlokovic from USC; Esther Y. Son from Stanford University; Xinmei Wen and Davide Trotti from Thomas Jefferson University; Kassandra Kisler and Amy R. Nelson from USC and Thomas Jefferson University; Vamshidhar R. Vangoor, Ketharini Senthilkumar, Leonard H. van den Berg, and R. Jeroen Pasterkamp from the University Medical Center Utrecht in the Netherlands; Tze-Yuan Cheng and Shih-Jong J. Lee from DRVision Technologies; Paul August from Icagen Corp.; Jason A. Chen, Nicholas Wisniewski, Victor Hanson-Smith, T. Grant Belgard and Alice Zhang from Verge Genomics; and Chris Grunseich and Michael Ward from the National Institute of Neurological Disorders and Stroke.

Seventy-five percent of the research was supported with federal funding totaling $6 million from the National Institutes of Health (AG039452, AG023084, NS034467, R00NS077435 and R01NS097850, T32DC009975-04) and the U.S. Department of Defense (W81XWH-15-1-0187). Twenty-five percent of the work was supported by $2 million from private and non-U.S. sources, including the ALS Foundation Netherlands (TOTALS), Epilepsiefonds (12-08, and 15-05), VICI grant Netherlands Organisation for Scientific Research (NWO), the Donald E. and Delia B. Baxter Foundation, the Tau Consortium, the Frick Foundation for ALS Research, the Muscular Dystrophy Association, the New York Stem Cell Foundation, the Regenerative Medicine Initiative at the Keck School of Medicine of USC, the USC Broad Innovation Award, the Southern California Clinical and Translational Science Institute, and the Walter V. and Idun Berry Postdoctoral Fellowship.

Media Contact

Zen Vuong
zvuong@usc.edu
213-300-1381

 @USC

http://www.usc.edu 

Zen Vuong | EurekAlert!

Further reports about: Cell blood cells cell death cells die dementia lysosomes nerve cells

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>