Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why might reading make myopic?

18.07.2018

About half of the students finishing high school in Germany are myopic. In myopia, the eye grows too long, and the focus of the image is in front of the retina. The visual scene is out of focus when people are looking at a distance. Myopia is the prize to pay for good education - statistically, one year of education makes about a quarter diopter more myopic. Myopia is increasing worldwide, since a solid education becomes more and more important.

It is known that myopia develops later when children are more outside before school and are exposed to bright illumination. What exactly makes them myopic when they start reading at school is still not fully understood. For a long time, it was assumed that too little accommodation during reading moves the sharp image behind the retina, which would stimulate further eye growth.


Figure 1. Qantification of the relative input strength to ON or OFF cells when dark text on bright background is read (A) or vica versa (B), using custom-developed software. Below: results of the automated analysis. Dark blue: preferential OFF stimulation, pink: preferential ON stimulation. Curves below show the quantitative data on realtive ON and OFF input strength. Note that input strength flips over when text contrast is inverted.

Frank Schaeffel / Institute for Ophthalmic Research Tuebingen


Figure 2. Left: OCT scan of the retina and the choroid in the living eye. The pit in the center is the fovea, ther area of sharpest vision. The thickness of the choroid is measured under the fovea (yellow line). Severeal hundred meausrements have shown that the thickness of the choroid increases when subjects read bright text on dark, and decreases when they read dark text on bright background - standard text. Right: change in choroidal thickness over time, averages from 7 subjects.

Frank Schaeffel / Institute for Ophthalmic Research Tuebingen

However, data were never fully convincing. Andrea C. Aleman, Min Wang and Frank Schaeffel (Institute for Ophthalmic Research) have now found a new unexpected reason why reading may make myopic.

Different from a digital camera which reads out each single pixel, the retina mainly evaluates differences between neighbouring pixels (photoreceptors). This is achieved by cells which compare the brightness in the center and the periphery of their light sensitive area („receptive fields“). These cells send mainly data on the differences to the brain. Doing this, the amount of information is massively reduced.

However this is also necessary since we have about 125 Million pixel in the retina but only about 1 Million “cables” in the optic nerve. The optic nerve is therefore a „bottleneck“ for transmission of visual information.

There are cells that respond mostly to brightness in the center of the receptive fields and darkness in the periphery (ON center cells), and cells that respond preferentially when the center is dark and the periphery is bright (OFF center cells). During our normal daily visual experience, both types are similarly stimulated. But what happens during reading of text?

Software was developed to quantify the relative stimulus strength for ON and OFF cells for various visual environments. The software showed that dark text on bright background stimulates mainly OFF cells (Figure 1 A), while bright text on dark background stimulates mainly the ON cells (Figure 1B).

It was known from earlier experiments in chickens and mice that stimulation of ON cells tended to inhibit eye growth while stimulation of OFF cells tended to increase eye growth.

How can one show that such a mechanism may also operate in humans? Using optical coherence tomography (OCT) it is possible to measure the thickness of tissue layers in the living eye with very high resolution (micrometer range).

The layer behind the retina, the choroid, is of particular interest since it has earlier been shown in chickens, various species of monkeys and children that changes in choroidal thickness can predict future changes in eye growth. When the choroid thins, the eye typically starts growing, when it thickens, eye growth is inhibited and no myopia will develop.

Alleman, Wang and Schaeffel asked their subject to read dark text on white background or bright text on dark background. Already after 30 minutes it was found that the thickness of the choroid either decreased (when reading standard text) or increased when reading text with inverted contrast (Figure 2).

One would therefore expect that dark text on bright background would stimulate myopia development and bright text on dark background would inhibit myopia. Simply inverting text contrast is therefore strategy to inhibit its development. This is easily achieved on computer screens and tablets but certainly more demanding when it comes to printed books.

The potency of the potential new strategy to inhibit myopia has still to be verified in a (planned) study in school children - but at least there is experimental confirmation that the choroid can change its thickness in either direction, depending on the contrast polarity of the text that is read (Figure 2).

Figures
Figure 1. Qantification of the relative input strength to ON or OFF cells when dark text on bright background is read (A) or vica versa (B), using custom-developed software. Below: results of the automated analysis. Dark blue: preferential OFF stimulation, pink: preferential ON stimulation. Curves below show the quantitative data on realtive ON and OFF input strength. Note that input strength flips over when text contrast is inverted.

Figure 2. Left: OCT scan of the retina and the choroid in the living eye. The pit in the center is the fovea, ther area of sharpest vision. The thickness of the choroid is measured under the fovea (yellow line). Severeal hundred meausrements have shown that the thickness of the choroid increases when subjects read bright text on dark, and decreases when they read dark text on bright background - standard text. Right: change in choroidal thickness over time, averages from 7 subjects.

Wissenschaftliche Ansprechpartner:

Universitiy Hospital Tuebingen
Centre for Ophthalmology, Institute for Ophthalmic Research,
Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany
e-mail: frank.schaeffel@uni-tuebingen.de

Originalpublikation:

http://www.nature.com/articles/s41598-018-28904-x
Reading and Myopia: Contrast Polarity Matters. Andrea C. Aleman, Min Wang & Frank Schaeffel. Scientific Reports volume 8, Article number: 10840 (2018) DOI:10.1038/s41598-018-28904-x


Bianca Hermle | idw - Informationsdienst Wissenschaft
Further information:
http://www.medizin.uni-tuebingen.de/

More articles from Health and Medicine:

nachricht When added to gene therapy, plant-based compound may enable faster, more effective treatments
18.10.2019 | Scripps Research Institute

nachricht Diabetes: A next-generation therapy soon available?
17.10.2019 | Université de Genève

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>