Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why CLL is Often Characterized by Relapses after Treatment – New Targets for Therapy Identified

05.12.2014

Chronic lymphocytic leukemia (CLL) is among the most frequent leukemias affecting adults in Western countries. It usually occurs in older patients, does not cause any symptoms for a long time and is often only discovered by accident. Despite treatment, relapses frequently occur.

The immunologists Dr. Kristina Heinig and Dr. Uta Höpken (Max Delbrück Center for Molecular Medicine, MDC, Berlin-Buch) and the hematologist Dr. Armin Rehm (MDC and Charité – Universitätsmedizin Berlin) have now discovered why this is so (Cancer Discovery, doi: 10.1158/2159-8290.CD-14-0096).*

In a mouse model they developed, the researchers demonstrated that crosstalk between the cancer cells and a group of stromal cells in the spleen is crucial for cancer growth. At the same time they were able to block the entry of cancer cells into the spleen as well as their proliferation and thus identified new targets for future therapies in humans.

A high number of malignantly mutated B lymphocytes is characteristic for CLL. B cells are normally an important component of the immune system. They produce antibodies with which the body combats pathogens (foreign antigens) and pathogenically modified structures. They acquire their final functionality in the germinal centers of lymphoid organs such as the spleen.

For this purpose, the healthy B cells migrate into the B-cell zone (B-cell follicle) of the spleen and lodge there in the stromal cell niche. There they interact with follicular dendritic cells (FDC). Unlike the similarly named classical dendritic cells, the FDC are not blood cells but rather stromal cells that form a network in the center of the B cell follicle. This stromal cell network lures B cells into it and exposes them to foreign antigens, which the B cells recognize and require for their activation and maturation. Only then are they fit for their task as antibody-producing immune cells.

The B cells enter the “training center” of the lymphoid organs via the messenger molecules of the immune system, the chemokines. They guide the B lymphocytes, which have a receptor on their surface for these chemokines. Leukemia cells, as malignant immune cells, also have these homing receptors on their cell surface to which these chemokines bind, thus enabling them to establish themselves in the stromal cell niche.

In their research project, Dr. Höpken and Dr. Rehm started from the hypothesis that the processes which normally regulate the migration of B lymphocytes into the B-cell follicle are also the reason for the migration of leukemia cells into the lymphoid organs. Hence, within the B-cell follicle the survival and growth of malignant B cells may depend on the contact of the leukemia cells with the FDC.

In CLL, despite chemotherapy or radiotherapy, a relapse with renewed leukemic proliferation in lymphoid tissues can occur because the FDC usually survive chemotherapy or radiotherapy far better than the leukemia cells. If a few leukemia cells escape the therapy – physicians call this minimal residual disease – the FDC ensure that the leukemia cells within the B-cell follicles have optimal growth conditions and proliferate. Dr. Heinig, Dr. Höpken and Dr. Rehm have now elucidated this process in detail in a mouse model, which is similar to human CLL.

Intensive interaction between leukemia cells and the FDC
As the researchers in Berlin showed, the chemokine CXCL13 and its receptor CXCR5 on the surface of the leukemia cells are absolutely essential to ensure that the leukemia cells can reach the spleen. With the aid of this homing receptor, the cancer cells are lured into the B-cell follicle of the spleen, where the FDC secrete the chemokine CXCL13. But unlike healthy B cells, the leukemia cells migrate directly across the marginal zone without taking a detour via the T-cell zone into the stimulating stromal cell niche of the B-cell follicle. When the researchers blocked the chemokine receptor CXCR5 in the mice, the leukemia cells could no longer migrate into the stromal cell niche and proliferated much more slowly.

In a second step, the researchers studied the consequences of the interaction between the malignant B cells and the FDC in the B-cell follicle. The result was that the close contact between the leukemia cells and the FDC network stimulates the cancer cells to increasingly produce another signaling substance, lymphotoxin. The lymphotoxin of the leukemia cells binds to the lymphotoxin-beta receptor on the FDC, which then increasingly secrete the chemokine CXCL13. This creates a positive feedback loop because the chemokine CXCL13 plays a major role in the recruitment of leukemia cells in the B cell follicles.

The FDC also provide growth factors that promote the proliferation of leukemia cells in the stromal niche. When the researchers inhibited the binding of the lymphotoxin to the lymphotoxin-beta receptor on the FDC with an immunologically active substance, they were able to end this ping-pong match between leukemia cells and the FDC and dramatically reduce tumor growth.

The researchers thus identified two different targets that may complement the chemotherapy currently used to treat CLL. The first is the blockade of the chemokine/homing receptor CXCR5 on the leukemia cells, which prevents the cancer cells from lodging in the B-cell follicle. “This homing receptor,” Dr. Rehm explained, “is increased on the leukemia cells of patients with CLL.” Second, via the blockade of the lymphotoxin-beta receptor on the FDC, the reciprocal crosstalk between the leukemia cells and the FDC promoting tumor proliferation is interrupted and thus the tumor development is likewise significantly reduced.

From the results of their study, Dr. Rehm and Dr. Höpken infer that chemotherapies already in clinical use combined with immune therapies that interrupt the crosstalk between leukemia cells and the FDC may be beneficial. This combination could prevent the residual leukemia cells that have escaped a chemotherapy or radiation therapy from recovering in the stromal cell niche and from triggering a relapse.

* Access to follicular dendritic cells is a pivotal step in murine chronic lymphocytic leukemia B cell activation and proliferation
Kristina Heinig1, Marcel Gätjen2, Michael Grau3, Vanessa Stache1, Ioannis Anagnostopoulos4, Kerstin Gerlach2, Raluca A. Niesner5, Zoltan Cseresnyes5,6, Anja E. Hauser5,7, Peter Lenz3, Thomas Hehlgans8, Robert Brink9, Jörg Westermann10, Bernd Dörken2,10, Martin Lipp1, Georg Lenz10, Armin Rehm2,10*#, and Uta E. Höpken1*#
1Max Delbrück Center for Molecular Medicine, MDC, Department of Tumor Genetics and Immunogenetics; 13125 Berlin, Germany
2Max Delbrück Center for Molecular Medicine, MDC, Department of Hematology, Oncology and Tumorimmunology, 13125 Berlin, Germany
3Philipps-University Marburg, Department of Physics, 35032 Marburg, Germany
4Charité-Universitätsmedizin Berlin, Department of Pathology, Campus Mitte, 10117 Berlin, Germany
5Deutsches Rheumaforschungszentrum, DRFZ, 10117 Berlin, Germany
6Max Delbrück Center for Molecular Medicine, MDC, Confocal and 2-Photon Microscopy Core Facility, 13125 Berlin, Germany
7Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
8Institute for Immunology, University Regensburg, 93042 Regensburg, Germany
9Garvan Institute of Medical Research, Darlinghurst NSW 2010, Australia
10Charité-Universitätsmedizin Berlin, Department of Hematology, Oncology and Tumorimmunology, Campus Virchow-Klinikum, 13353 Berlin, Germany
# These authors contributed equally
*Corresponding authors

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/en


Weitere Informationen:

http://cancerdiscovery.aacrjournals.org/cgi/content/abstract/2159-8290.CD-14-0096

Barbara Bachtler | Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>