Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Welders may be at increased risk for brain damage

08.04.2011
Workers exposed to welding fumes may be at increased risk of damage to the same brain area harmed by Parkinson’s disease, according to a new study by researchers at Washington University School of Medicine in St. Louis.

Fumes produced by welding contain manganese, an element that scientists have linked to neurological problems including Parkinson’s disease-like symptoms.

“In the United States alone, there are more than 1 million workers who perform welding as a part of their jobs,” says Brad Racette, MD, professor of neurology at Washington University School of Medicine. “If further investigation of this potential link between neurotoxic effects and these fumes proves it is valid, it would have a substantial public-health impact for the U.S. workforce and the economy.”

The study appears online April 6, 2011, in Neurology, the medical journal of the American Academy of Neurology.

The study involved 20 welders with no symptoms of Parkinson’s disease, 20 people with Parkinson’s disease who were not welders and 20 people who were not welders and did not have Parkinson’s. The welders were recruited from two shipyards and one metal fabrication company, and each had an average of 30,000 hours of lifetime welding exposure.

All participants were given brain PET and MRI scans and motor skills tests. A neurologist who specializes in movement disorders also examined all participants. The welders' average blood manganese levels were found to be two times the upper limits of normal blood manganese levels established in prior studies of general populations.

In one area of the brain, PET scans indicated that welders had an average 11.7 percent reduction in a marker of the chemical dopamine compared to people who did not weld. Dopamine helps nerve cells communicate and is decreased in specific brain regions in people with Parkinson’s disease. The welders’ motor skills test scores also showed mild movement difficulties that were not as extensive as those found in the early Parkinson’s disease patients.

Although the same area of the brain was affected as in Parkinson’s disease, the pattern of effects within this area was reversed. Parkinson's disease normally has the greatest impact on the rear of a structure known as the putamen. In the welders, the largest drop in the marker for dopamine occurred in a structure behind the putamen known as the caudate.

“While these changes in the brain may be an early marker of neuron death related to welding exposure, the damage appeared to be different from those of people with full-fledged Parkinson’s disease,” Racette says. “MRI scans also revealed brain changes in welders that were consistent with manganese deposits in the brain.”

Racette and his colleagues plan a larger follow-up study to clarify the potential links between welding and brain damage.

Criswell SR, Perlmutter JS, Videen TO, Moerlein SM, Flores HP, Birke AM, Racette BA. Reduced uptake of [18F]FDOPA PET in asymptomatic welders with occupational manganese exposure. Neurology, online April 6, 2011.

Funding from the Michael J. Fox Foundation, the National Institutes of Health, the Clinical Science Translational Award, the Neuroscience Blueprint Grant, the American Parkinson Disease Association (APDA) Advanced Research Center at Washington University, the Greater St. Louis Chapter of the APDA, the McDonnell Center for Higher Brain Function and the Barnes-Jewish Hospital Foundation supported this research.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>