Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ways of treating Alzheimer’s

01.11.2011
Several potential drugs for the treatment of Alzheimer’s have worked well on mice – but none of them on humans. A leading researcher from the Sahlgrenska Academy at the University of Gothenburg, Sweden, is now launching brand new methods for diagnosing Alzheimer’s and monitoring treatment.
Research advances in recent years have given us a detailed knowledge of the molecular mechanisms behind Alzheimer’s disease. The spotlight has fallen on beta amyloid, a peptide formed from a special protein in the brain. The prevailing hypothesis is that the protein clumps together into plaques, which damage the brain’s nerve cells and causes the characteristic symptoms of Alzheimer’s.

The amyloid theory has spawned a large number of potential drugs which attempt to delay the development of the disease by slowing down the formation of, or even clearing, plaques. However, several major clinical trials have shown that this type of medication is not at all effective.

Kaj Blennow, a professor at the University of Gothenburg’s Sahlgrenska Academy and one of the world’s leading dementia researchers, is now taking research into new Alzheimer’s medication in a brand new direction.
“It’s important that we constantly question research results, including in Alzheimer’s research,” says Blennow. “And to do this we have to come up with new analytical methods.”

Blennow and his research colleagues believe that the solution lies in being able to test different drugs directly on living patients instead of on mice as has been the case to date.
“The mouse models currently being used have a very tenuous link to the most common form of Alzheimer’s,” says Blennow. “This is particularly obvious when new drug candidates are tested on real people – we have now identified over 100 molecules that reduce the formation of plaques in mice with Alzheimer’s, but unfortunately none have led to a single drug that slows down the illness in humans.”

Blennow and his research colleagues at the Clinical Neurochemistry Laboratory are trying instead to come up with new analytical methods that use biomarkers to monitor biochemical changes in patients with Alzheimer’s. It is hoped that the biomarkers can be used both to make an accurate and early diagnosis and to establish and monitor the effects of new drugs.

“Our studies on patients with Alzheimer’s and other age-related disorders would suggest that beta-amyloid is perhaps not the direct cause of the illness, but instead the brain’s response to different types of stress,” says Blennow. “This could completely change the way we view the illness and could play a crucial role in future treatments.”

ALZHEIMER’S DISEASE
With more than 100,000 people affected in Sweden, Alzheimer’s is one of our most common diseases. Caused by changes in the brain’s nerve cells, the disease predominantly affects the memory and often leads to an early death. Alzheimer’s results in not only considerable suffering for patients and their families, but also enormous costs to society.
For more information, please contact: Kaj Blennow
Tel: +46 (0)31 343 1791, mobile: +46 (0)761 073 835
E-mail: kaj.blennow@neuro.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Health and Medicine:

nachricht Shipment tracking for "fat parcels" in the body
14.10.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Antibody-based eye drops show promise for treating dry eye disease
14.10.2019 | University of Illinois at Chicago

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

New material captures carbon dioxide

15.10.2019 | Materials Sciences

Drugs for better long-term treatment of poorly controlled asthma discovered

15.10.2019 | Interdisciplinary Research

Family of crop viruses revealed at high resolution for the first time

15.10.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>