Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virus-like particles provide vital clues about brain tumours

19.04.2013
Exosomes are small, virus-like particles that can transport genetic material and signal substances between cells. Researchers at Lund University, Sweden, have made new findings about exosomes released from aggressive brain tumours, gliomas. These exosomes are shown to have an important function in brain tumour development, and could be utilised as biomarkers to assess tumour aggressiveness through a blood test.

“Current wisdom says that cells are closed entities that communicate through the secretion of soluble signalling molecules. Recent findings indicate that cells can exchange more complex information – whole packages of genetic material and signalling proteins. This is an entirely new conception of how cells communicate”, says Dr Mattias Belting, Professor of Oncology at Lund University and senior consultant in oncology at Skåne University Hospital, Lund, Sweden.

Exosomes are small vesicles of only 30–90 nm. They are produced inside cells and act as “transport vehicles” of genetic material that can be transferred to surrounding cells. Since their first discovery, exosomes have been found in blood, saliva, urine, breast milk and other body fluids.

Mattias Belting’s research group has investigated exosomes released from tumour cells of patients with gliomas. The tiny exosome particles are delivered from the tumour to healthy cells of the brain and may prime normal tissue for efficient spreading of the tumour. The researchers in Lund have now shown that the aggressiveness of the tumour is reflected in the exosome molecular profile.

“We have succeeded in developing a method for the isolation of exosomes from brain tumour patients through a relatively simple blood test. Our analyses indicate that the content of exosomes mirrors the aggressiveness of the tumour in a unique manner”, says postdoctoral researcher Paulina Kucharzewska.

Exosomes could thus be utilised as biomarkers, i.e. to provide guidance on how the patient should be treated and to monitor treatment response. This possibility is particularly attractive with brain tumours that are not readily accessible for tissue biopsy. However, analysis of exosomes from the blood may also prove important with other tumour types. The value of conventional tumour biopsies is limited by the heterogeneity of tumour tissue, i.e. the tissue specimen may not be fully representative of the biological characteristics of a particular tumour. Exosomes, however, may offer more comprehensive information, according to the researchers.

The second international meeting on exosomes has just opened in Boston, and Mattias Belting and members of his team are there.

“It is very exciting to be part of the emergence of a novel research field. It can be anticipated that the most influential researchers in this area may one day be awarded the Nobel Prize”, says Dr Belting.

The results are published in Proceedings of the National Academy of Sciences (PNAS).

Professor Mattias Belting:
Mobile: 0046 46 733 507473
Email: mattias.belting@med.lu.se

Lotte Billing | EurekAlert!
Further information:
http://www.lu.se

More articles from Health and Medicine:

nachricht New nanomedicine slips through the cracks
24.04.2019 | University of Tokyo

nachricht Sugar entering the brain during septic shock causes memory loss
23.04.2019 | Rensselaer Polytechnic Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>