Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual vehicle vibrations

12.02.2013
UI researcher designs program to predict role posture may play in reducing head, neck injuries

“Sit up straight in your chair!”


Computer models show postures of a tractor's operator in a field experimental study funded by the Injury Prevention Research Center. Images generated by John Meusch.

That command given by countless parents to their children may one day be delivered by vehicle designers to a robot that is actually a computerized model of a long-distance truck driver or other heavy equipment operator, thanks to a University of Iowa research program.

That’s because a UI researcher has designed a computer program that allows engineers to accurately predict the role posture plays in transferring the stress of vehicle motion to bone and muscle in the head and neck.

Titled "Human head-neck models in whole-body vibration: Effect of posture,” the paper is published in the online Jan. 3 issue of the Journal of Biomechanics.

Lead author Salam Rahmatalla, associate professor of civil and environmental engineering and research engineer at the Virtual Soldier Research (VSR) Program, a part of the College of Engineering's Center for Computer-Aided Design (CCAD), says that a computer model is needed.

“Studies have shown that awkward head-neck postures inside whole-body vibration environments can increase discomfort and the risk of injury,” he says. “The goal of this project is to introduce a computerized human model that can be used to predict human motion in response to whole-body vibration when the human takes different head-neck postures.”
He notes that the predicted motion data of his current model can be used to drive more sophisticated computer human models—with muscles and internal tissues—that can predict muscle forces and internal strain and stress between tissues and vertebrae.

Significantly, the computer program may reduce the need for actual human subjects to drive test vehicles.

“One major benefit of the current computer human model is the possibility of using it instead of humans in the design/modification loop of equipment in whole-body vibration,” he says.

Rahmatalla says a wide variety of industry, university, and other researcher venues likely will learn from his work.

“The automotive industry, and manufacturers of heavy machinery including construction, agriculture, mining, and military vehicles can benefit from the application of this model to the design of their equipment,” he says. “Also, human factors researchers and ergonomists can use this model to investigate the effect of head-neck posture on human response, performance, human machine interaction, and injury risk in whole-body vibration.”

Rahmatalla’s long-term VSR objective is to develop a virtual human capable of reproducing complex human responses to a whole body vibration environment that will help answer questions related to potential injury risks and design modifications.

Rahmatalla conducted the study by having 11 male participants sit in a vehicle simulator where they were subjected to white-noise random vibration and the acceleration data of the head and neck for each was recorded. The recorded motion data was used to calibrate the computer human model.

His colleague in the study was Yang Wang, a student in the UI Graduate College and CCAD graduate research assistant.
Contacts
Gary Galluzzo, University Communication and Marketing, 319-384-0009

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>