Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual planning of surgical procedures

12.09.2011
Siemens and Synthes launch software for the preparation of bone fracture operations

Together with Synthes, the global market leader for bone implants, Siemens Healthcare has developed the software PreOPlan that will allow surgeons to virtually plan routine bone fracture surgeries (trauma surgery) as well as corrections of leg deformities (osteotomy).

Using PreOPlan, the surgeon simulates the planned procedure on an X-ray image of the patient. With the aid of an integrated implant database, he can determine which bone implants are, for example, most suited for the correction of a fracture. Subsequently, the software generates a report that helps the operating staff prepare the surgery with the selected implants. Moreover, the surgeon can use this report prove his preparations for the procedure and to comprehensively explain the operation to the patient.

Normally, surgeons plan routine surgeries for bone fractures of the extremities “in their heads” while looking at an X-ray image of the fracture, or they hand-draw the planned procedure on the image. This brings several disadvantages: the surgeon can only estimate which implant is best suited to fix the point of fracture. Furthermore, he is not able to accurately document how he has prepared himself for the procedure. Many hospitals, however, demand such verification. In order to allow surgeons to plan their procedures safer and verifiable, Siemens Healthcare and Synthes conjointly developed a software that allows simple and quick preparation of routine surgeries on a computer workstation.

The software PreOPlan allows the surgeon to precisely analyze a bone fracture using a digital Xray image of the patient: The surgeon can segment the fracture on the screen, measure it and then reassemble the fracture point in the anatomically correct position. All suitable implants for the respective anatomical region are suggested automatically by a database with bone implants from Synthes. The surgeon can call up information about the implants (length, inclination, size, or material) directly on the X-ray image. Once the surgeon has decided for an implant, PreOPlan automatically presents a selection of implants that are required additionally, such as screws for fixing. The surgeon then can make his selection. Overall, the planning of a routine surgery with PreOPlan only takes a few minutes.

Subsequently, the planning documents are summarized in a final report. This contains the planning images that the surgeon can use for orientation during surgery, as well as a material list for the operating staff who have to prepare the procedure. The planning images make it easier for the attending physician to explain the intended surgery to his patient. Moreover, the planning documents facilitate obtaining second opinion from a colleague.

In addition to routine trauma surgery, PreOPlan also supports planning of a so-called osteotomy on the knee. During this procedure, a thighbone is separated near to the knee and a wedge is removed in order to correct a malformation of the leg. Using PreOPlan, the surgeon can accurately calculate the position, inclination and the size of the wedge that is to be removed in order to correct the deformity.

The product mentioned here is not commercially available in all countries. Due to regulatory reasons the future availability in any country cannot be guaranteed. Further details are available from the local Siemens organizations.

The Siemens Healthcare Sector is one of the world’s largest healthcare solution providers and a leading manufacturer and service provider in the fields of medical imaging, laboratory diagnostics, hospital information technology and hearing instruments. It offers solutions covering the entire supply chain under one roof - from prevention and early detection to diagnosis and on to treatment and aftercare. By optimizing clinical workflows oriented toward the most important clinical pictures, Siemens also strives to make healthcare faster, better and, at the same time, less expensive. Siemens Healthcare currently has some 48,000 employees worldwide and is present throughout the world. During fiscal 2010 (up to September 30) the Sector posted sales worth 12.4 billion euros and profits of around 750 million euros.

Sonja Fischer | Siemens Healthcare
Further information:
http://www.siemens.com/healthcare

More articles from Health and Medicine:

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>