Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Video game players advancing genetic research

07.12.2011
Users of game designed by McGill researchers contributing to analysis of DNA sequences

Thousands of video game players have helped significantly advance our understanding of the genetic basis of diseases such as Alzheimer’s, diabetes and cancer over the past year. They are the users of a web-based video game developed by Dr. Jérôme Waldispuhl of the McGill School of Computer Science and collaborator Mathieu Blanchette.

Phylo is designed to allow casual game players to contribute to scientific research by arranging multiple sequences of coloured blocks that represent human DNA. By looking at the similarities and differences between these DNA sequences, scientists are able to gain new insight into a variety of genetically-based diseases.

The researchers are releasing the results computed from the solutions collected over the last year today, together with an improved version of Phylo for tablets.

Over the past year, Phylo’s 17,000 registered users have been able to simply play the game for fun or choose to help decode a particular genetic disease. “A lot of people said they enjoyed playing a game which could help to trace the origin of a specific disease like epilepsy,” said Waldispuhl. “There’s a lot of excitement in the idea of playing a game and contributing to science at the same time,” Blanchette agreed. ”It’s guilt-free playing; now you can tell yourself it’s not just wasted time.”

Waldispuhl and his students came up with the idea of using a video game to solve the problem of DNA multiple sequence alignment because it is a task that is difficult for computers to do well. “There are some calculations that the human brain does more efficiently than any computer can. Recognizing and sorting visual patterns fall in that category,” explained Waldispuhl. “Computers are best at handling large amounts of messy data, but where we require high accuracy, we need humans. In this case, the genomes we’re analyzing have already been pre-aligned by computers, but there are parts of it that are misaligned. Our goal is to identify these parts and transform the task of aligning them into a puzzle people will want to sort out.”

So far, it has been working very well. Since the game was launched in November 2010, the researchers have received more than 350,000 solutions to alignment sequence problems. “Phylo has contributed to improving our understanding of the regulation of 521 genes involved in a variety of diseases. It also confirms that difficult computational problems can be embedded in a casual game that can easily be played by people without any scientific training,” Waldispuhl said. “What we’re doing here is different from classical citizen science approaches. We aren’t substituting humans for computers or asking them to compete with the machines. They are working together. It’s a synergy of humans and machines that helps to solve one of the most fundamental biological problems.”

With the new games and platforms, the researchers are hoping to encourage even more gamers to join the fun and contribute to a better understanding of genetically-based diseases at the same time.

For more information:
Phylo – a game which enables you to sort genetic code: http://phylo.cs.mcgill.ca/

http://phylo.cs.mcgill.ca/mobile

McGill’s School of Computer Science: http://www.cs.mcgill.ca/
Computational Structural Biology Group: http://csb.cs.mcgill.ca/
McGill Centre for Bioinformatics: http://www.mcgill.ca/mcb/

Katherine Gombay | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>